Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

被引:7
作者
Boyer, M. D. [1 ]
Andre, R. G. [1 ]
Gates, D. A. [1 ]
Gerhardt, S. P. [1 ]
Menard, J. E. [1 ]
Poli, F. M. [1 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
关键词
plasma scenarios; tokamaks; control-oriented modeling; actuator constraints; linear-quadratic-integral control; anti-windup; LOW-ASPECT-RATIO;
D O I
10.1088/1741-4326/aa68e9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control scheme that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.
引用
收藏
页数:13
相关论文
共 43 条
[1]  
Andre R, 2012, AM PHYS SOC 54 ANN D
[2]  
Astrom KJ, 2008, Feedback systems: An introduction for scientists and engineers
[3]  
Bas O. Y., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P4567, DOI 10.1109/CDC.1999.833262
[4]   Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations [J].
Boyer, M. D. ;
Andre, R. ;
Gates, D. A. ;
Gerhardt, S. ;
Goumiri, I. R. ;
Menard, J. .
NUCLEAR FUSION, 2015, 55 (05)
[5]   First-principles-driven model-based current profile control for the DIII-D tokamak via LQI optimal control [J].
Boyer, Mark D. ;
Barton, Justin ;
Schuster, Eugenio ;
Luce, Tim C. ;
Ferron, John R. ;
Walker, Michael L. ;
Humphreys, David A. ;
Penaflor, Ben G. ;
Johnson, Robert D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (10)
[6]   Stability at high performance in the MAST spherical tokamak [J].
Buttery, RJ ;
Akers, R ;
Arends, E ;
Conway, NJ ;
Counsell, GF ;
Cunningham, G ;
Gimblett, CG ;
Gryaznevich, M ;
Hastie, RJ ;
Hole, MJ ;
Lehane, I ;
Martin, R ;
Patel, A ;
Pinfold, T ;
Sauter, O ;
Taylor, D ;
Turri, G ;
Valovic, M ;
Walsh, MJ ;
Wilson, HR .
NUCLEAR FUSION, 2004, 44 (09) :1027-1035
[7]   Macroscopic stability of high β MAST plasmas [J].
Chapman, I. T. ;
Cooper, W. A. ;
Graves, J. P. ;
Gryaznevich, M. P. ;
Hastie, R. J. ;
Hender, T. C. ;
Howell, D. F. ;
Hua, M. -D. ;
Huysmans, G. T. A. ;
Keeling, D. L. ;
Liu, Y. Q. ;
Meyer, H. F. ;
Michael, C. A. ;
Pinches, S. D. ;
Saarelma, S. ;
Sabbagh, S. A. .
NUCLEAR FUSION, 2011, 51 (07)
[8]   NSTX-U Control System Upgrades [J].
Erickson, K. G. ;
Gates, D. A. ;
Gerhardt, S. P. ;
Lawson, J. E. ;
Mozulay, R. ;
Sichta, P. ;
Tchilinguirian, G. J. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (06) :853-858
[9]  
Fredrickson E., 2016, 2016 INT AT EN AG FU
[10]   Collective fast ion instability-induced losses in national spherical tokamak experiment [J].
Fredrickson, E. D. ;
Bell, R. E. ;
Darrow, D. S. ;
Fu, G. Y. ;
Gorelenkov, N. N. ;
LeBlanc, B. P. ;
Medley, S. S. ;
Menard, J. E. ;
Park, H. ;
Roquemore, A. L. ;
Heidbrink, W. W. ;
Sabbagh, S. A. ;
Stutman, D. ;
Tritz, K. ;
Crocker, N. A. ;
Kubota, S. ;
Peebles, W. ;
Lee, K. C. ;
Levinton, F. M. .
PHYSICS OF PLASMAS, 2006, 13 (05)