The Zic family of zinc finger proteins is essential for animal development, as demonstrated by the holoprosencephaly caused by mammalian Zic2 mutation. To determine the molecular mechanism of Zic-mediated developmental control, we characterized two types of high molecular weight complexes, including Zic2. Complex I was composed of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku70/80, and poly(ADP-ribose) polymerase; complex II contained Ku70/80 and RNA helicase A; all the components interacted directly with Zic2 protein. Immunoprecipitation, submiclear localization, and in vitro phosphorylation analyses revealed that the DNAPKcs in complex I played an essential role in the assembly of complex II. Stepwise exchange from complex I to complex II depended on phosphorylation of Zic2 by DNA-PK and poly(ADP-ribose) polymerase. Phosphorylated Zic2 protein made a stable complex with RNA helicase A, and complex II could interact with RNA polymerase II. Phosphorylation-dependent transformation of Zic2-containing molecular complexes may occur in transcriptional regulation.