Differentiable generalized synchronization of chaos

被引:167
作者
Hunt, BR
Ott, E
Yorke, JA
机构
[1] UNIV MARYLAND, INST PLASMA RES, DEPT ELECT ENGN, COLLEGE PK, MD 20742 USA
[2] UNIV MARYLAND, INST PLASMA RES, DEPT PHYS, COLLEGE PK, MD 20742 USA
[3] UNIV MARYLAND, SYST RES INST, COLLEGE PK, MD 20742 USA
[4] UNIV MARYLAND, DEPT MATH, COLLEGE PK, MD 20742 USA
关键词
D O I
10.1103/PhysRevE.55.4029
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider simple Lyapunov-exponent-based conditions under which the response of a system to a chaotic drive is a smooth function of the drive state. We call this differentiable generalized synchronization (DGS). When DGS does not hold, we quantify the degree of nondifferentiability using the Holder exponent. We also discuss the consequences of DGS and give an illustrative numerical example.
引用
收藏
页码:4029 / 4034
页数:6
相关论文
共 29 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[3]  
BROOMHEAD DS, 1992, J ROY STAT SOC B MET, V54, P373
[4]   CASCADING SYNCHRONIZED CHAOTIC SYSTEMS [J].
CARROLL, TL ;
PECORA, LM .
PHYSICA D, 1993, 67 (1-3) :126-140
[5]   THE MECHANISM OF THE INCREASE OF THE GENERALIZED DIMENSION OF A FILTERED CHAOTIC TIME-SERIES [J].
CHENNAOUI, A ;
LIEBLER, J ;
SCHUSTER, HG .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) :1311-1328
[6]   GLOBAL ATTRACTORS FOR NONLINEAR PROBLEMS OF MATHEMATICAL PHYSICS [J].
CHUESHOV, ID .
RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (03) :133-161
[7]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[8]   ENHANCING SYNCHRONISM OF CHAOTIC SYSTEMS [J].
DING, MZ ;
OTT, E .
PHYSICAL REVIEW E, 1994, 49 (02) :R945-R948
[9]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[10]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193