Classical solutions of multidimensional Hele-Shaw models

被引:106
作者
Escher, J [1 ]
Simonett, G [1 ]
机构
[1] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN 37240
关键词
classical solutions; Hele-Shaw model; moving boundary problem; maximal regularity;
D O I
10.1137/S0036141095291919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and uniqueness of classical solutions for the multidimensional expanding Hele-Shaw problem are proved.
引用
收藏
页码:1028 / 1047
页数:20
相关论文
共 24 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
AMANN H., 1995, Linear and quasilinear parabolic problems. Vol. I, V1, DOI DOI 10.1007/978-3-0348-9221-6
[3]  
AMANN H, UNPUB LINEAR QUASILI, V2
[4]   NONLINEAR ANALYTIC SEMIFLOWS [J].
ANGENENT, SB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :91-107
[5]  
Crank J., 1984, Free and Moving Boundary Problems
[6]  
Da Prato G., 1979, Ann. Mat. Pura Appl., V120, P329
[7]   THE ILL-POSED HELE-SHAW MODEL AND THE STEFAN PROBLEM FOR SUPERCOOLED WATER [J].
DIBENEDETTO, E ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :183-204
[8]  
Elliot C. M., 1982, WEAK VARIATIONAL MET
[9]  
ELLIOTT CM, 1980, J I MATH APPL, V25, P121
[10]   A VARIATIONAL INEQUALITY APPROACH TO HELE-SHAW FLOW WITH A MOVING BOUNDARY [J].
ELLIOTT, CM ;
JANOVSKY, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1981, 88 :93-107