The core component of the translocation apparatus, Sec61p or a, was previously cloned in Yarrowia lipolytica. Using anti-Sec61p antibodies, we showed that most of the translocation sites are devoted to co-translational translocation in this yeast, which is similar to the situation in mammalian cells but in contrast to the situation in Saccharomyces cerevisiae, where post-translational translocation is predominant. In order to characterize further the minimal translocation apparatus in Y lipolytica, the beta Sec61 complex subunit, Sbh1p, was cloned by functional complementation of a Deltasbh1, Deltasbh2 S. cerevisiae mutant. The secretion of the reporter protein is not impaired in the Y lipolytica sbh1 inactivated strain. We screened the E lipolytica two-hybrid library to look for partners of this translocon component. The ER-membrane chaperone protein, calnexin, was identified as an interacting protein. By a co-immunoprecipitation approach, we confirmed this association in Yarrowia and then showed that the S. cerevisiae Sbh2p protein was a functional homologue of YISbh1p. The interaction of Sbh1p with calnexin was shown to occur between the lumenal domain of both proteins. These results suggest that the P subunit of the Sec61 translocon may relay folding of nascent proteins to their translocation.