Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase

被引:106
作者
Seiffert, Grazyna B.
Ullmann, G. Matthias
Messerschmidt, Albrecht
Schink, Bernhard
Kroneck, Peter M. H.
Einsle, Oliver
机构
[1] Univ Gottingen, Inst Mikrobiol & Genet, D-37077 Gottingen, Germany
[2] Univ Konstanz, Fachbereich Biol, D-78457 Constance, Germany
[3] Univ Bayreuth, D-95477 Bayreuth, Germany
[4] Max Planck Inst Biochem, Abt Proteom & Signaltransduct, D-82152 Martinsried, Germany
关键词
acetylene reduction; metalloproteins; tungsten enzymes;
D O I
10.1073/pnas.0610407104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The tungsten-iron-sulfur enzyme acetylene hydratase stands out from its class because it catalyzes a nonredox reaction, the hydration of acetylene to acetaldehyde. Sequence comparisons group the protein into the dimethyl sulfoxide reductase family, and it contains a bis-molybdopterin guanine dinucleotide-ligated tungsten atom and a cubane-type [4Fe:4S] cluster. The crystal structure of acetylene hydratase at 1.26 angstrom now shows that the tungsten center binds a water molecule that is activated by an adjacent aspartate residue, enabling it to attack acetylene bound in a distinct, hydrophobic pocket. This mechanism requires a strong shift of pK(a) of the aspartate, caused by a nearby low-potential [4Fe:4S] cluster. To access this previously unrecognized W-Asp active site, the protein evolved a new substrate channel distant from where it is found in other molybdenum and tungsten enzymes.
引用
收藏
页码:3073 / 3077
页数:5
相关论文
共 43 条
[1]   Methods used in the structure determination of bovine mitochondrial F-1 ATPase [J].
Abrahams, JP ;
Leslie, AGW .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :30-42
[2]   ELECTROSTATIC CALCULATIONS OF THE PKA VALUES OF IONIZABLE GROUPS IN BACTERIORHODOPSIN [J].
BASHFORD, D ;
GERWERT, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (02) :473-486
[3]  
Bashford D., 1997, SCI COMPUTING OBJECT, V1343, P233, DOI DOI 10.1007/3-540-63827-X_66
[4]   PROTONATION OF INTERACTING RESIDUES IN A PROTEIN BY A MONTE-CARLO METHOD - APPLICATION TO LYSOZYME AND THE PHOTOSYNTHETIC REACTION CENTER OF RHODOBACTER-SPHAEROIDES [J].
BEROZA, P ;
FREDKIN, DR ;
OKAMURA, MY ;
FEHER, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5804-5808
[5]   Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A [J].
Bertero, MG ;
Rothery, RA ;
Palak, M ;
Hou, C ;
Lim, D ;
Blasco, F ;
Weiner, JH ;
Strynadka, NCJ .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :681-687
[6]   Influence of the membrane potential on the protonation of bacteriorhodopsin: Insights from electrostatic calculations into the regulation of proton pumping [J].
Bombarda, Elisa ;
Becker, Torsten ;
Ullmann, G. Matthias .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (37) :12129-12139
[7]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[8]   Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster [J].
Boyington, JC ;
Gladyshev, VN ;
Khangulov, SV ;
Stadtman, TC ;
Sun, PD .
SCIENCE, 1997, 275 (5304) :1305-1308
[9]  
Bruice P. Y., 2004, ORGANIC CHEM
[10]   Mechanism of molybdenum nitrogenase [J].
Burgess, BK ;
Lowe, DJ .
CHEMICAL REVIEWS, 1996, 96 (07) :2983-3011