Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons

被引:85
作者
Coutrakon, G [1 ]
Cortese, J [1 ]
Ghebremedhin, A [1 ]
Hubbard, J [1 ]
Johanning, J [1 ]
Koss, P [1 ]
Maudsley, G [1 ]
Slater, CR [1 ]
Zuccarelli, C [1 ]
Robertson, J [1 ]
机构
[1] E CAROLINA UNIV,DEPT ENVIRONM HLTH,GREENVILLE,NC 27858
关键词
proton therapy; microdosimetry; relative biological effectiveness;
D O I
10.1118/1.598038
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Protons have long been recognized as low LET radiation in radiotherapy. However, a detailed account of LET (linear energy transfer) and RBE (relative biological effectiveness) changes with incident beam energy and depth in tissue is still unresolved. This issue is particularly important for treatment planning, where the physical dose prescription is calculated from a RBE using cobalt as the reference radiation. Any significant RBE changes with energy or depth will be important to incorporate in treatment planning. In this paper we present microdosimetry spectra for the proton beam at various energies and depths and compare the results to cell survival studies performed at Loma Linda. An empirically determined biological weighting function that depends on lineal energy is used to correlate the microdosimetry spectra with cell survival data. We conclude that the variations in measured RBE with beam energy and depth are small until the distal edge of the beam is reached. On the distal edge, protons achieve stopping powers as high as 100 keV/mu m, which is reflected in the lineal energy spectra taken there. Lineal energy spectra 5 cm beyond the distal edge of the Bragg peak also show a high LET component but at a dose rate 600 times smaller than observed inside the proton held. (C) 1997 American Association of Physicists in Medicine.
引用
收藏
页码:1499 / 1506
页数:8
相关论文
共 15 条
[1]  
*AAPM, 1983, 16 AM I PHYS
[2]  
CHRISTOPHOROU LG, 1971, ATOMIC MOL RAD PHYSI, P14
[3]  
COSGROVE VP, 1990, RADIAT PROT DOSIM, V44, P405
[4]   A PROTOTYPE BEAM DELIVERY SYSTEM FOR THE PROTON MEDICAL ACCELERATOR AT LOMA-LINDA [J].
COUTRAKON, G ;
BAUMAN, M ;
LESYNA, D ;
MILLER, D ;
NUSBAUM, J ;
SLATER, J ;
JOHANNING, J ;
MIRANDA, J ;
DELUCA, PM ;
SIEBERS, J ;
LUDEWIGT, B .
MEDICAL PHYSICS, 1991, 18 (06) :1093-1099
[5]  
FOWLER J, 1981, NUCL PARTICLES CANC, P108
[6]   Measurements of radiobiological effectiveness in the 85 MeV proton beam produced at the cyclotron CYCLONE of Louvain-la-Neuve, Belgium [J].
Gueulette, J ;
Gregoire, V ;
OctavePrignot, M ;
Wambersie, A .
RADIATION RESEARCH, 1996, 145 (01) :70-74
[7]   RELATIVE BIOLOGICAL EFFECTIVENESS OF 160-MEV PROTONS .1. MICRODOSIMETRY [J].
KLIAUGA, PJ ;
COLVETT, RD ;
LAM, YMP ;
ROSSI, HH .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1978, 4 (11-1) :1001-1008
[8]   BIOLOGICAL WEIGHTING FUNCTION FOR RBE SPECIFICATION OF NEUTRON THERAPY BEAMS - INTERCOMPARISON OF 9 EUROPEAN CENTERS [J].
PIHET, P ;
MENZEL, HG ;
SCHMIDT, R ;
BEAUDUIN, M ;
WAMBERSIE, A .
RADIATION PROTECTION DOSIMETRY, 1990, 31 (1-4) :437-442
[9]  
RAJU MR, 1980, HEAVY PARTICLE RADIO, P213
[10]  
ROBERTSON JB, 1975, CANCER-AM CANCER SOC, V35, P1664, DOI 10.1002/1097-0142(197506)35:6<1664::AID-CNCR2820350628>3.0.CO