PAMAM dendrimer composite membrane for CO2 separation:: Formation of a chitosan gutter layer

被引:106
作者
Kouketsu, Takayuki [1 ]
Duan, Shuhong [1 ]
Kai, Teruhiko [1 ]
Kazama, Shingo [1 ]
Yamada, Koichi [1 ]
机构
[1] Res Inst Innovat Technol Earth, Kyoto 6190292, Japan
关键词
PAMAM dendrimer; composite membrane; CO2; separation; chitosan gutter layer;
D O I
10.1016/j.memsci.2006.10.014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A poly(amidoamine) (PAMAM) dendrimer composite membrane with an excellent CO2/N-2 separation factor was developed in-situ. The In-situ Modification (IM) method was used to modify the surface of commercial porous membranes, such as ultrafiltration membranes, to produce a gas selective layer by controlling the interface precipitation of the membrane materials in the state of a received membrane module. Using the IM method, a chitosan layer was prepared on the inner surface of a commercially available ultrafiltration membrane as a gutter layer, in order to affix PAMAM dendrimer molecules on the porous substrate. After chitosan treatment, the PAMAM dendrimer was impregnated into the gutter layer to form a PAMAM/chitosan hybrid layer. The CO2 separation performance of the resulting composite membrane was tested at a pressure difference of 100 kPa and a temperature of 40 degrees C, using a mixed CO2 (5 vol%)/N-2 (95 vol%) feed gas. The PAMAM dendrimer composite membrane, with a gutter layer prepared from ethylene glycol diglycidyl ether and a 0.5 wt% chitosan solution of two different molecular weight chitosans, revealed an excellent CO2/N-2 separation factor and a CO2 permeance of 400 and 1.6 x 10(-7) m(3) (STP) m(-2) s(-1) kPa(-1), respectively. SEM observations revealed a defect-free chitosan layer (thickness 200 nm) positioned directly beneath the top surface of the UF membrane substrate. After PAMAM dendrimer treatment, the hybrid chitosan/PAMAM dendrimer layer was observed with a thickness of 300 nm. XPS analysis indicated that the hybrid layer contained about 20-40% PAMAM dendrimer. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 19 条
[1]   Future directions of membrane gas separation technology [J].
Baker, RW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1393-1411
[2]  
CABASSO I, 1986, Patent No. 4602922
[3]  
Chiou JJ., 1994, Composite gas separation membrane having a gutter layer comprising a crosslinked polar phenyl containing organopolysiloxane and method for making the same, Patent No. [5286280, US 5,286,280]
[4]   Fabrication of multi-layer composite hollow fiber membranes for gas separation [J].
Chung, TS ;
Shieh, JJ ;
Lau, WWY ;
Srinivasan, MP ;
Paul, DR .
JOURNAL OF MEMBRANE SCIENCE, 1999, 152 (02) :211-225
[5]   Development of PAMAM dendrimer composite membranes for CO2 separation [J].
Duan, Shuhong ;
Kouketsu, Takayuki ;
Kazama, Shingo ;
Yamada, Koichi .
JOURNAL OF MEMBRANE SCIENCE, 2006, 283 (1-2) :2-6
[6]  
Frechet J., 2001, DENDRIMERS OTHER DEN, P587
[7]   Gas separation properties and morphology of asymmetric hollow fiber membranes made from cardo polyamide [J].
Kazama, S ;
Sakashita, M .
JOURNAL OF MEMBRANE SCIENCE, 2004, 243 (1-2) :59-68
[8]   Dendrimer membranes:: A CO2-selective molecular gate [J].
Kovvali, AS ;
Chen, H ;
Sirkar, KK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (31) :7594-7595
[9]   Dendrimer liquid membranes:: CO2 separation from gas mixtures [J].
Kovvali, AS ;
Sirkar, KK .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (11) :2502-2511
[10]   Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes [J].
Kusakabe, K ;
Kuroda, T ;
Morooka, S .
JOURNAL OF MEMBRANE SCIENCE, 1998, 148 (01) :13-23