Thin-film glucose biosensor based on plasma-polymerized film: Simple design for mass production

被引:96
作者
Muguruma, H [1 ]
Hiratsuka, A
Karube, I
机构
[1] Kochi Univ Technol, Dept Environm Syst Engn, Kochi 7828502, Japan
[2] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan
关键词
D O I
10.1021/ac000014n
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose a simple thin-film glucose biosensor based on a plasma-polymerized film. The film is deposited directly onto the substrate under dry conditions. The resulting films are extreme thin, adhere well onto the substrate (electrode), and have a highly cross-linked network structure and functional groups, such as amino groups, which enable a large amount of enzyme to be immobilized. Since this design allows fabrication through a dry process, with the exception of the enzyme immobilization, which is the last stage of the process, the chip fabrication can be designed as a full-wafer process to achieve mass production compatibility. The resulting sensors produced using this film are more reproducible, exhibit lower noise, and reduce the effect: of interference to a greater degree than sensors made using conventional immobilization methods, e.g., via 3-(aminopropyl)triethoxysilane. The obtained film is a good interfacial design between enzyme and electrode; enzyme two-dimensionally locates very close to the electrode in a manner that is quite reproducible. Therefore, a wide dynamic range (up to 60 mM) and rapid response time (11.5 +/- 0.8 s) were obtained. Because of its highly cross-linking network structure, the amperometric response due to interferences such as ascorbic acid and acetaminophen was reduced by size discrimination of plasma-polymerized films.
引用
收藏
页码:2671 / 2675
页数:5
相关论文
共 50 条
[1]  
Anderson JL, 1998, ANAL CHEM, V70, p519R
[2]  
[Anonymous], ANAL CHEM
[3]   Modification of glucose oxidase by the covalent attachment of a tetrathiafulvalene derivative [J].
Bartlett, PN ;
Booth, S ;
Caruana, DJ ;
Kilburn, JD ;
Santamaria, C .
ANALYTICAL CHEMISTRY, 1997, 69 (04) :734-742
[4]   STUDY OF PERFORMANCE AND CHEMICAL CHARACTERISTICS OF COMPOSITE REVERSE-OSMOSIS MEMBRANES PREPARED BY PLASMA POLYMERIZATION OF ALLYLAMINE [J].
BELL, AT ;
WYDEVEN, T ;
JOHNSON, CC .
JOURNAL OF APPLIED POLYMER SCIENCE, 1975, 19 (07) :1911-1930
[5]   Micromachining sensors for electrochemical measurement in subnanoliter volumes [J].
Bratten, CDT ;
Cobbold, PH ;
Cooper, JM .
ANALYTICAL CHEMISTRY, 1997, 69 (02) :253-258
[6]   FERROCENE-MEDIATED ENZYME ELECTRODE FOR AMPEROMETRIC DETERMINATION OF GLUCOSE [J].
CASS, AEG ;
DAVIS, G ;
FRANCIS, GD ;
HILL, HAO ;
ASTON, WJ ;
HIGGINS, IJ ;
PLOTKIN, EV ;
SCOTT, LDL ;
TURNER, APF .
ANALYTICAL CHEMISTRY, 1984, 56 (04) :667-671
[7]   IMMOBILIZATION OF GLUCOSE-OXIDASE IN FERROCENE-MODIFIED PYRROLE POLYMERS [J].
FOULDS, NC ;
LOWE, CR .
ANALYTICAL CHEMISTRY, 1988, 60 (22) :2473-2478
[8]   A fill-and-flow biosensor [J].
Gooding, JJ ;
Hall, EAH .
ANALYTICAL CHEMISTRY, 1998, 70 (15) :3131-3136
[9]   Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers [J].
Gooding, JJ ;
Praig, VG ;
Hall, EAH .
ANALYTICAL CHEMISTRY, 1998, 70 (11) :2396-2402
[10]   Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism [J].
Hall, SB ;
Khudaish, EA ;
Hart, AL .
ELECTROCHIMICA ACTA, 1998, 43 (5-6) :579-588