Continuum percolation threshold for interpenetrating squares and cubes

被引:104
作者
Baker, DR [1 ]
Paul, G
Sreenivasan, S
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2A7, Canada
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Monte Carlo simulations are performed to determine the critical percolation threshold for interpenetrating square objects in two dimensions and cubic objects in three dimensions. Simulations are performed for two cases: (i) objects whose edges are aligned parallel to one another and (ii) randomly oriented objects. For squares whose edges are aligned, the critical area fraction at the percolation threshold phi(c)=0.6666+/-0.0004, while for randomly oriented squares phi(c)=0.6254+/-0.0002, 6% smaller. For cubes whose edges are aligned, the critical volume fraction at the percolation threshold phi(c)=0.2773+/-0.0002, while for randomly oriented cubes phi(c)=0.2168+/-0.0002, 22% smaller.
引用
收藏
页码:5 / 046136
页数:5
相关论文
共 22 条
[1]   SYSTEMATIC DERIVATION OF PERCOLATION THRESHOLDS IN CONTINUUM-SYSTEMS [J].
ALON, U ;
DRORY, A ;
BALBERG, I .
PHYSICAL REVIEW A, 1990, 42 (08) :4634-4638
[2]   EXCLUDED VOLUME AND ITS RELATION TO THE ONSET OF PERCOLATION [J].
BALBERG, I ;
ANDERSON, CH ;
ALEXANDER, S ;
WAGNER, N .
PHYSICAL REVIEW B, 1984, 30 (07) :3933-3943
[3]   UNIVERSAL PERCOLATION-THRESHOLD LIMITS IN THE CONTINUUM [J].
BALBERG, I .
PHYSICAL REVIEW B, 1985, 31 (06) :4053-4055
[4]   RECENT DEVELOPMENTS IN CONTINUUM PERCOLATION [J].
BALBERG, I .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06) :991-1003
[5]   Scaling corrections:: site percolation and Ising model in three dimensions [J].
Ballesteros, HG ;
Fernández, LA ;
Martín-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01) :1-13
[6]  
Ben-Avraham D., 2000, DIFFUSION REACTIONS
[7]  
BUNDE A, 1996, FRACTAL DISORDERED S
[8]   MEASUREMENT OF THE CONDUCTIVITY EXPONENT IN TWO-DIMENSIONAL PERCOLATING NETWWORKS - SQUARE LATTICE VERSUS RANDOM-VOID CONTINUUM [J].
DUBSON, MA ;
GARLAND, JC .
PHYSICAL REVIEW B, 1985, 32 (11) :7621-7623
[9]   GEOMETRICAL PERCOLATION-THRESHOLD OF OVERLAPPING ELLIPSOIDS [J].
GARBOCZI, EJ ;
SNYDER, KA ;
DOUGLAS, JF ;
THORPE, MF .
PHYSICAL REVIEW E, 1995, 52 (01) :819-828
[10]   UNIVERSAL CONDUCTIVITY CURVE FOR A PLANE CONTAINING RANDOM HOLES [J].
GARBOCZI, EJ ;
THORPE, MF ;
DEVRIES, MS ;
DAY, AR .
PHYSICAL REVIEW A, 1991, 43 (12) :6473-6482