Enzyme electrokinetics:: Hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase

被引:108
作者
Léger, C
Jones, AK
Roseboom, W
Albracht, SPJ
Armstrong, FA
机构
[1] Univ Oxford, Inorgan Chem Lab, Oxford OX1 3QR, England
[2] Univ Amsterdam, Swammerdam Inst Life Sci, NL-1018 TV Amsterdam, Netherlands
关键词
D O I
10.1021/bi026586e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism of catalytic hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase has been studied by protein film voltammetry (PFV) with the enzyme adsorbed at a pyrolytic graphite edge electrode. By analyzing the entire shapes of catalytic voltammograms, the energetics of the catalytic cycles (reduction potentials and acidity constants of the active states), including the detailed profiles of activity against pH and the sequences of proton and electron transfers, have been determined, and these are discussed with respect to the mechanism. PFV, which probes rates as a continuous function of the electrochemical potential (i.e., in the "potential domain"), is proven to be an invaluable tool for determining the redox properties of an active site in the presence of its substrate, at room temperature, and during turnover. This is especially relevant in the case of the active states of hydrogenase, since one of its substrates (the proton) is always present at significant levels in the titration medium at physiological pH values.
引用
收藏
页码:15736 / 15746
页数:11
相关论文
共 52 条
[1]   THE STRUCTURE AND MECHANISM OF IRON-HYDROGENASES [J].
ADAMS, MWW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (02) :115-145
[2]   NICKEL HYDROGENASES - IN SEARCH OF THE ACTIVE-SITE [J].
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1188 (03) :167-204
[3]   Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity [J].
Anderson, LJ ;
Richardson, DJ ;
Butt, JN .
BIOCHEMISTRY, 2001, 40 (38) :11294-11307
[4]   Recent developments in faradaic bioelectrochemistry [J].
Armstrong, FA ;
Wilson, GS .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2623-2645
[5]   Reactions of complex metalloproteins studied by protein-film voltammetry [J].
Armstrong, FA ;
Heering, HA ;
Hirst, J .
CHEMICAL SOCIETY REVIEWS, 1997, 26 (03) :169-179
[6]   INFRARED STUDIES ON THE INTERACTION OF CARBON-MONOXIDE WITH DIVALENT NICKEL IN HYDROGENASE FROM CHROMATIUM-VINOSUM [J].
BAGLEY, KA ;
VANGARDEREN, CJ ;
CHEN, M ;
DUIN, EC ;
ALBRACHT, SPJ ;
WOODRUFF, WH .
BIOCHEMISTRY, 1994, 33 (31) :9229-9236
[7]   A distal histidine mutant (H52Q) of yeast cytochrome c peroxidase catalyzes the oxidation of H2O2 instead of its reduction [J].
Bateman, L ;
Léger, C ;
Goodin, DB ;
Armstrong, FA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (38) :9260-9263
[8]   The [NiFe] hydrogenase from Allochromatium vinosum studied in EPR-detectable states:: H/D exchange experiments that yield new information about the structure of the active site [J].
Bleijlevens, B ;
Faber, BW ;
Albracht, SPJ .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2001, 6 (08) :763-769
[9]   Voltammetry of a flavocytochrome c3:: The lowest potential heme modulates fumarate reduction rates [J].
Butt, JN ;
Thornton, J ;
Richardson, DJ ;
Dobbin, PS .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :1001-1009
[10]   NICKEL AND IRON-SULFUR CENTERS IN DESULFOVIBRIO-GIGAS HYDROGENASE - ELECTRON-SPIN-RESONANCE SPECTRA, REDOX PROPERTIES AND INTERACTIONS [J].
CAMMACK, R ;
PATIL, DS ;
HATCHIKIAN, EC ;
FERNANDEZ, VM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 912 (01) :98-109