Subtype- and species-specific knockdown of PKC using short interfering RNA

被引:43
作者
Irie, N [1 ]
Sakai, N [1 ]
Ueyama, T [1 ]
Kajimoto, T [1 ]
Shirai, Y [1 ]
Saito, N [1 ]
机构
[1] Biosignal Res Ctr, Mol Pharmacol Lab, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1016/S0006-291X(02)02531-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA interference (RNAi), the targeted mRNA degradation induced by double-stranded RNA (dsRNA), is a powerful tool for analyzing gene function in many organisms. Recently, it has been shown that RNAi is also applicable to cultured mammalian cells by using short interfering RNA (siRNA) [Nature 411 (2001) 494]. To examine whether this siRNA method is useful for analyzing the subtype-specific functions of protein kinase C (PKC), we first prepared siRNAs which target human alphaPKC and human deltaPKC and applied them into mammalian cells to suppress the expression of endogenous alphaPKC and deltaPKC, respectively. Each siRNA for alpha or deltaPKC specifically suppressed the endogenous expression of corresponding PKC subtype in human-derived cell lines such as HEK-293 and HeLa cells, but not in cells derived from rat species. The suppression level of deltaPKC reached maximum 48-72 h after the transfection of siRNA. In addition, the siRNA targeting rat deltaPKC suppressed endogenous and exogenous rat deltaPKCs but not human deltaPKC, suggesting that siRNAs targeting PKCs effectively knocked down endogenous/exogenous PKCs in mammalian cells, in subtype- and species-specific manner. Furthermore, we also developed the method to discriminate the siRNA-transfected cells using the antibody recognizing thymine dimer. Our present results strongly suggest that siRNA method enable us to examine the subtype- specific function of PKC, not only by knockdown of the endogenous target PKC subtype, but also by subsequent compensation with the exogenous corresponding wild/mutant PKC derived from other species. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:738 / 743
页数:6
相关论文
共 17 条
[1]   RNA interference: genetic wand and genetic watchdog [J].
Bosher, JM ;
Labouesse, M .
NATURE CELL BIOLOGY, 2000, 2 (02) :E31-E36
[2]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[3]   Post-transcriptional gene silencing across kingdoms [J].
Cogoni, C ;
Macino, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (06) :638-643
[4]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[5]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[6]  
KOJI T, 1990, ACTA PATHOL JAPON, V40, P793
[7]   RNAi functions in cultured mammalian neurons [J].
Krichevsky, AM ;
Kosik, KS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11926-11929
[8]   INTRACELLULAR SIGNALING BY HYDROLYSIS OF PHOSPHOLIPIDS AND ACTIVATION OF PROTEIN-KINASE-C [J].
NISHIZUKA, Y .
SCIENCE, 1992, 258 (5082) :607-614
[9]   PROTEIN KINASES .5. PROTEIN-KINASE-C AND LIPID SIGNALING FOR SUSTAINED CELLULAR-RESPONSES [J].
NISHIZUKA, Y .
FASEB JOURNAL, 1995, 9 (07) :484-496
[10]   THE ROLE OF PROTEIN KINASE-C IN CELL-SURFACE SIGNAL TRANSDUCTION AND TUMOR PROMOTION [J].
NISHIZUKA, Y .
NATURE, 1984, 308 (5961) :693-698