Chemiresistors for array-based vapor sensing using composites of carbon black with low volatility organic molecules

被引:67
作者
Gao, Ting [1 ]
Woodka, Marc D. [1 ]
Brunschwig, Bruce S. [1 ]
Lewis, Nathan S. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
D O I
10.1021/cm060905x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemically sensitive resistors have been fabricated from composites of carbon black and low volatility, nonpolymeric, organic molecules such as propyl gallate, lauric acid, and dioctyl phthalate. Sorption of organic vapors into the nonconductive phase of such composites produced rapid and reversible changes in the relative differential resistance response of the sensing films. Arrays of these sensors, in which each sensing film was comprised of carbon black and a chemically distinct nonpolymeric organic molecule or blend of organic molecules, produced characteristic response patterns upon exposure to a series of different organic test vapors. The use of nonpolymeric sorption phases allowed fabrication of sensors having a high density of randomly oriented functional groups and provided excellent discrimination between analytes. By comparison to carbon black-polymer composite vapor sensors and sensor arrays, such sensors provided comparable detection limits as well as enhanced clustering and enhanced resolution ability between test analytes.
引用
收藏
页码:5193 / 5202
页数:10
相关论文
共 44 条
[1]   Cross-reactive chemical sensor arrays [J].
Albert, KJ ;
Lewis, NS ;
Schauer, CL ;
Sotzing, GA ;
Stitzel, SE ;
Vaid, TP ;
Walt, DR .
CHEMICAL REVIEWS, 2000, 100 (07) :2595-2626
[2]   Optical multibead arrays for simple and complex odor discrimination [J].
Albert, KJ ;
Walt, DR ;
Gill, DS ;
Pearce, TC .
ANALYTICAL CHEMISTRY, 2001, 73 (11) :2501-2508
[3]   CORRELATION OF SURFACE ACOUSTIC-WAVE DEVICE COATING RESPONSES WITH SOLUBILITY PROPERTIES AND CHEMICAL-STRUCTURE USING PATTERN-RECOGNITION [J].
BALLANTINE, DS ;
ROSE, SL ;
GRATE, JW ;
WOHLTJEN, H .
ANALYTICAL CHEMISTRY, 1986, 58 (14) :3058-3066
[4]   CONDUCTING POLYMER GAS SENSORS .1. FABRICATION AND CHARACTERIZATION [J].
BARTLETT, PN ;
ARCHER, PBM ;
LINGCHUNG, SK .
SENSORS AND ACTUATORS, 1989, 19 (02) :125-140
[5]   SMART CHEMICAL SENSING ARRAYS USING TIN OXIDE SENSORS AND ANALOG WINNER-TAKE-ALL SIGNAL-PROCESSING [J].
BEDNARCZYK, D ;
DEWEERTH, SP .
SENSORS AND ACTUATORS B-CHEMICAL, 1995, 27 (1-3) :271-274
[6]   Exploitation of spatiotemporal information and geometric optimization of signal/noise performance using arrays of carbon black-polymer composite vapor detectors [J].
Briglin, SM ;
Freund, MS ;
Tokumaru, P ;
Lewis, NS .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 82 (01) :54-74
[7]   Classification performance of carbon black-polymer composite vapor detector arrays as a function of array size and detector composition [J].
Burl, MC ;
Sisk, BC ;
Vaid, TP ;
Lewis, NS .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 87 (01) :130-149
[8]  
BURL MC, 2000, SENSOR ACTUAT B-CHEM, V406, P710
[9]   FEEDFORWARD NEURAL NETWORKS IN CHEMISTRY - MATHEMATICAL SYSTEMS FOR CLASSIFICATION AND PATTERN-RECOGNITION [J].
BURNS, JA ;
WHITESIDES, GM .
CHEMICAL REVIEWS, 1993, 93 (08) :2583-2601
[10]   ''Vapochromic'' compounds as environmental sensors .2. Synthesis and near-infrared and infrared spectroscopy studies of [Pt(arylisocyanide)(4)][Pt(CN)(4)] upon exposure to volatile organic compound vapors [J].
Daws, CA ;
Exstrom, CL ;
Sowa, JR ;
Mann, KR .
CHEMISTRY OF MATERIALS, 1997, 9 (01) :363-368