Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna

被引:1747
作者
Kinkhabwala, Anika [1 ]
Yu, Zongfu [2 ]
Fan, Shanhui [2 ]
Avlasevich, Yuri [3 ]
Muellen, Klaus [3 ]
Moerner, W. E. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
基金
美国国家科学基金会;
关键词
PLASMONIC NANOANTENNAS; OPTICAL ANTENNAS; EFFICIENCY; EMISSION; PROBE; DECAY;
D O I
10.1038/NPHOTON.2009.187
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Owing to the size mismatch between light and nanoscale objects such as single molecules, it is important to be able to control light-molecule interactions(1-4). Plasmonic nanoantennas create highly enhanced local fields when pumped resonantly, leading to increased Raman scattering(5), but whether fluorescence enhancement occurs depends upon a variety of factors. Although sharp metal tips(6) and colloids(7,8) can enhance fluorescence, the highly enhanced optical fields of lithographically fabricated bowtie nanoantennas(9) provide a structure that is more controllable and amenable to integration. Using gold bowties, we observe enhancements of a single molecule's fluorescence up to a factor of 1,340, ten times higher than reported previously(7,8,10-22). Electromagnetic simulations reveal that this is a result of greatly enhanced absorption and an increased radiative emission rate, leading to enhancement of the intrinsic quantum efficiency by an estimated factor of nine, despite additional non-radiative ohmic effects. Bowtie nanoantennas thus show great potential for high-contrast selection of single nanoemitters.
引用
收藏
页码:654 / 657
页数:4
相关论文
共 30 条
  • [1] Enhancement and quenching of single-molecule fluorescence
    Anger, P
    Bharadwaj, P
    Novotny, L
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [2] Enhanced localized fluorescence in plasmonic nanoantennae
    Bakker, Reuben M.
    Yuan, Hsiao-Kuan
    Liu, Zhengtong
    Drachev, Vladimir P.
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    Pedersen, Rasmus H.
    Gresillon, Samuel
    Boltasseva, Alexandra
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (04)
  • [3] Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches
    Bek, Alpan
    Jansen, Reiner
    Ringler, Moritz
    Mayilo, Sergiy
    Klar, Thomas A.
    Feldmann, Jochen
    [J]. NANO LETTERS, 2008, 8 (02) : 485 - 490
  • [4] Surface plasmon-quantum dot coupling from arrays of nanoholes
    Brolo, AG
    Kwok, SC
    Cooper, MD
    Moffitt, MG
    Wang, CW
    Gordon, R
    Riordon, J
    Kavanagh, KL
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (16) : 8307 - 8313
  • [5] Chance RR, 1978, Adv. Chem. Phys., V37, P1, DOI DOI 10.1002/9780470142561.CH1
  • [6] Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles
    Chen, Yeechi
    Munechika, Keiko
    Ginger, David S.
    [J]. NANO LETTERS, 2007, 7 (03) : 690 - 696
  • [7] Edwards D.F., 1985, Handbook of optical constants of solids
  • [8] Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy
    Farahani, Javad N.
    Eisler, Hans-Juergen
    Pohl, Dieter W.
    Pavius, Michael
    Flueckiger, Philippe
    Gasser, Philippe
    Hecht, Bert
    [J]. NANOTECHNOLOGY, 2007, 18 (12)
  • [9] Single quantum dot coupled to a scanning optical antenna: A tunable superemitter
    Farahani, JN
    Pohl, DW
    Eisler, HJ
    Hecht, B
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (01)
  • [10] Engineering the optical response of plasmonic nanoantennas
    Fischer, Holger
    Martin, Olivier J. F.
    [J]. OPTICS EXPRESS, 2008, 16 (12) : 9144 - 9154