Controlling the false-positive rate in multilocus genome scans for selection

被引:137
作者
Thornton, Kevin R. [1 ]
Jensen, Jeffrey D. [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
关键词
D O I
10.1534/genetics.106.064642
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Rapid typing of genetic variation at many regions of the genome is an efficient way to survey variability in natural Populations in an effort to identify segments of the genome that have experienced recent natural Selection. Following such a genome scan, individual regions may be chosen for further sequencing and a more detailed analysis of patterns of variability, often to perform a parametric test for selection and to estimate the strength of a recent selective sweep. We show here that not accounting for the ascertainment of loci in such analyses leads to false inference of natural selection when the true model is selective neutrality, because the procedure of choosing unusual loci (in comparison to the rest of the genome-scan data) selects regions of the genome with genealogies similar to those expected tinder models of recent directional selection. We describe a simple and efficient correction for this ascertainment bias, which restores the false-positive rate to near-nominal levels. For the parameters considered here, we find that obtaining a test with the expected distribution of P-values depends on accurately accounting both for ascertainment of regions and for demography. Finally, we use simulations to explore the utility of relying on outlier loci to detect recent selective sweeps. We find that measures of diversity and of population differentiation are more effective than summaries of the site-frequency spectrum and that sequencing larger regions (2.5 kbp) in genome-scan studies leads to more power to detect recent selective sweeps.
引用
收藏
页码:737 / 750
页数:14
相关论文
共 51 条
[1]  
AKASHI H, 1995, GENETICS, V139, P1067
[2]   Population history and natural selection shape patterns of genetic variation in 132 genes [J].
Akey, JM ;
Eberle, MA ;
Rieder, MJ ;
Carlson, CS ;
Shriver, MD ;
Nickerson, DA ;
Kruglyak, L .
PLOS BIOLOGY, 2004, 2 (10) :1591-1599
[3]   A haplotype map of the human genome [J].
Altshuler, D ;
Brooks, LD ;
Chakravarti, A ;
Collins, FS ;
Daly, MJ ;
Donnelly, P ;
Gibbs, RA ;
Belmont, JW ;
Boudreau, A ;
Leal, SM ;
Hardenbol, P ;
Pasternak, S ;
Wheeler, DA ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Zeng, CQ ;
Gao, Y ;
Hu, HR ;
Hu, WT ;
Li, CH ;
Lin, W ;
Liu, SQ ;
Pan, H ;
Tang, XL ;
Wang, J ;
Wang, W ;
Yu, J ;
Zhang, B ;
Zhang, QR ;
Zhao, HB ;
Zhao, H ;
Zhou, J ;
Gabriel, SB ;
Barry, R ;
Blumenstiel, B ;
Camargo, A ;
Defelice, M ;
Faggart, M ;
Goyette, M ;
Gupta, S ;
Moore, J ;
Nguyen, H ;
Onofrio, RC ;
Parkin, M ;
Roy, J ;
Stahl, E ;
Winchester, E ;
Ziaugra, L ;
Shen, Y .
NATURE, 2005, 437 (7063) :1299-1320
[4]   Adaptive evolution of non-coding DNA in Drosophila [J].
Andolfatto, P .
NATURE, 2005, 437 (7062) :1149-1152
[5]   The effect of hitch-hiking on neutral genealogies [J].
Barton, NH .
GENETICS RESEARCH, 1998, 72 (02) :123-133
[6]  
BAUERDUMONT V, 2005, GENETICS, V171, P639
[7]   Evidence for a selective sweep in the wapl region of Drosophila melanogaster [J].
Beisswanger, S ;
Stephan, W ;
De Lorenzo, D .
GENETICS, 2006, 172 (01) :265-274
[8]   THE HITCHHIKING EFFECT ON THE SITE FREQUENCY-SPECTRUM OF DNA POLYMORPHISMS [J].
BRAVERMAN, JM ;
HUDSON, RR ;
KAPLAN, NL ;
LANGLEY, CH ;
STEPHAN, W .
GENETICS, 1995, 140 (02) :783-796
[9]   Genomic regions exhibiting positive selection identified from dense genotype data [J].
Carlson, CS ;
Thomas, DJ ;
Eberle, MA ;
Swanson, JE ;
Livingston, RJ ;
Rieder, MJ ;
Nickerson, DA .
GENOME RESEARCH, 2005, 15 (11) :1553-1565
[10]   Ascertainment bias in studies of human genome-wide polymorphism [J].
Clark, AG ;
Hubisz, MJ ;
Bustamante, CD ;
Williamson, SH ;
Nielsen, R .
GENOME RESEARCH, 2005, 15 (11) :1496-1502