Characterization of the Bayes estimator and the MDL estimator for exponential families

被引:9
作者
Takeuchi, J
机构
[1] Theory NEC Laboratory, RWCP (Real World Computing Partnership), NEC Corporation, Miyamae-ku, Kawasaki, Kanagawa 216
关键词
Bayes estimator; exponential family; higher order asymptotic theory; information geometry; Minimum Description Length principle; universal source coding;
D O I
10.1109/18.605579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the relationship between a Minimum Description Length (MDL) estimator (posterior mode) and a Bayes estimator for exponential families. We show the following results concerning these estimators: a) Both the Bayes estimator with Jeffreys prior and the MDL estimator with the uniform prior with respect to the expectation parameter are nearly equivalent to a bias-corrected maximum-likelihood estimator with respect to the canonical parameter, b) Both the Bayes estimator with the uniform prior with respect to the canonical parameter and the MDL estimator with Jeffreys prior are nearly equivalent to the maximum-likelihood estimator (MLE), which is unbiased with respect to the expectation parameter, These results together suggest a striking symmetry between the two estimators, since the canonical and the expectation parameters of an exponential family form a dual pair from the point of view of information geometry. Moreover, a) implies that we can approximate a Bayes estimator with Jeffreys prior simply by deriving an appropriate MDL estimator or an appropriate bias-corrected MLE. This is important because a Bayes mixture density with Jeffreys prior is known to be maximin in universal coding [7].
引用
收藏
页码:1165 / 1174
页数:10
相关论文
共 21 条
[1]  
Amari S, 1990, DIFFERENTIAL GEOMETR, V28
[2]  
[Anonymous], 1975, CLASSIF SOC B
[3]  
Barron A. R., 1985, THESIS STANFORD U ST
[4]   MINIMUM COMPLEXITY DENSITY-ESTIMATION [J].
BARRON, AR ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1034-1054
[5]  
BERNARDO JM, 1979, J R STAT SOC B, V41, P113
[6]  
Brown L. D., 1986, FUNDAMENTALS STAT EX, DOI DOI 10.1214/LNMS/1215466757
[7]   INFORMATION-THEORETIC ASYMPTOTICS OF BAYES METHODS [J].
CLARKE, BS ;
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :453-471
[8]   JEFFREYS PRIOR IS ASYMPTOTICALLY LEAST FAVORABLE UNDER ENTROPY RISK [J].
CLARKE, BS ;
BARRON, AR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (01) :37-60
[9]   UNIVERSAL NOISELESS CODING [J].
DAVISSON, LD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (06) :783-795
[10]   A SOURCE MATCHING APPROACH TO FINDING MINIMAX CODES [J].
DAVISSON, LD ;
LEONGARCIA, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (02) :166-174