Determinism versus nondeterminism for linear time RAMs with memory restrictions

被引:21
作者
Ajtai, M [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
关键词
D O I
10.1006/jcss.2002.1821
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Our computational model is a random access machine with n read only input registers each containing c log n bits of information and a read and write memory. We measure the time by the number of accesses to the input registers. We show that for all k there is an epsilon > 0 so that if n is sufficiently large then the elements distinctness problem cannot be solved in time kn with en bits of read and write memory; that is, there is no machine with this value of the parameters which decides whether there are two different input registers whose contents are identical. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:2 / 37
页数:36
相关论文
共 11 条
[1]  
Aho A., 1975, The Design and Analysis of Computer Algorithms
[2]   Time-space tradeoffs for branching programs [J].
Beame, P ;
Saks, M ;
Thathachar, JS .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :254-263
[4]  
BOLLOBAS B, 1986, COMBINATORICA, P129
[5]   A TIME-SPACE TRADEOFF FOR SORTING ON NON-OBLIVIOUS MACHINES [J].
BORODIN, A ;
FISCHER, MJ ;
KIRKPATRICK, DG ;
LYNCH, NA ;
TOMPA, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1981, 22 (03) :351-364
[6]   A TIME-SPACE TRADEOFF FOR ELEMENT DISTINCTNESS [J].
BORODIN, A ;
FICH, F ;
DERHEIDE, FMA ;
UPFAL, E ;
WIGDERSON, A .
SIAM JOURNAL ON COMPUTING, 1987, 16 (01) :97-99
[7]   A TIME-SPACE TRADEOFF FOR SORTING ON A GENERAL SEQUENTIAL MODEL OF COMPUTATION [J].
BORODIN, A ;
COOK, S .
SIAM JOURNAL ON COMPUTING, 1982, 11 (02) :287-297
[8]   2 TIME-SPACE TRADEOFFS FOR ELEMENT DISTINCTNESS [J].
KARCHMER, M .
THEORETICAL COMPUTER SCIENCE, 1986, 47 (03) :237-246
[9]   Optimal time-space trade-offs for sorting [J].
Pagter, J ;
Rauhe, T .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :264-268
[10]  
Paul W. J., 1983, 24th Annual Symposium on Foundations of Computer Science, P429, DOI 10.1109/SFCS.1983.39