Non-linear integral equation and excited-states scaling functions in the sine-Gordon model

被引:103
作者
Destri, C
deVega, HJ
机构
[1] IST NAZL FIS NUCL,I-20133 MILAN,ITALY
[2] UNIV PARIS 06,PHYS THEOR & HAUTES ENERGIES LAB,CNRS UA 280,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1016/S0550-3213(97)00468-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The NLIE (the non-linear integral equation equivalent to the Bethe ansatz equations for finite size) is generalized to excited states, that is states with holes and complex roots over the antiferromagnetic ground state, We consider the sine-Gordon/massive Thirring model (sG/mT) in a periodic box of length L using the light-cone approach, in which the sG/mT model is obtained as the continuum limit of an inhomogeneous six-vertex model. This NLIE is an useful starting point to compute the spectrum of excited states both analytically in the large L (perturbative) and small L (conformal) regimes as well as numerically. We derive the conformal weights of the Bethe states with holes and non-string complex roots (close and wide roots) in the UV limit. These weights agree with the Coulomb gas description, yielding a UV conformal spectrum related by duality to the IR conformal spectrum of the six-vertex model. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:621 / 664
页数:44
相关论文
共 34 条
[1]  
ABRAMOWITS M, 1972, HDB MATH FUNCTIONS
[2]   DYNAMICAL SYMMETRY-BREAKING AND FRACTIONIZATION IN A NEW INTEGRABLE MODEL [J].
ANDREI, N ;
DESTRI, C .
NUCLEAR PHYSICS B, 1984, 231 (03) :445-480
[3]   QUANTUM S-MATRIX OF THE (1+1)-DIMENSIONAL TODD CHAIN [J].
ARINSHTEIN, AE ;
FATEYEV, VA ;
ZAMOLODCHIKOV, AB .
PHYSICS LETTERS B, 1979, 87 (04) :389-392
[4]   ANALYSIS OF THE BETHE ANSATZ EQUATIONS OF THE XXZ MODEL [J].
BABELON, O ;
DEVEGA, HJ ;
VIALLET, CM .
NUCLEAR PHYSICS B, 1983, 220 (01) :13-34
[5]  
BAZHANOV VV, 961405 CLNS
[6]  
BAZHANOV VV, 961416 CLNS
[7]   GENERALIZED JOST FUNCTIONS AND LEVINSONS THEOREM IN A (1+1)-DIMENSIONAL RELATIVISTIC FIELD-THEORETIC MODEL [J].
BERG, B ;
KAROWSKI, M ;
THEIS, WR ;
THUN, HJ .
PHYSICAL REVIEW D, 1978, 17 (04) :1172-1177
[8]   AFFINE TODA FIELD-THEORY AND EXACT S-MATRICES [J].
BRADEN, HW ;
CORRIGAN, E ;
DOREY, PE ;
SASAKI, R .
NUCLEAR PHYSICS B, 1990, 338 (03) :689-746
[9]   ELASTIC S-MATRICES IN (1 + 1) DIMENSIONS AND TODA FIELD-THEORIES [J].
CHRISTE, P ;
MUSSARDO, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (24) :4581-4627
[10]   NEW THERMODYNAMIC BETHE ANSATZ EQUATIONS WITHOUT STRINGS [J].
DESTRI, C ;
DEVEGA, HJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (16) :2313-2317