The Emerging Characterization of Lysine Residue Deacetylation on the Modulation of Mitochondrial Function and Cardiovascular Biology

被引:51
作者
Lu, Zhongping [1 ]
Scott, Iain [1 ]
Webster, Bradley R. [1 ]
Sack, Michael N. [1 ]
机构
[1] NHLBI, Translat Med Branch, Bethesda, MD 20892 USA
关键词
sirtuins; mitochondrial metabolism; apoptosis; redox stress; heart; vascular biology; STRESS-RESPONSIVE DEACETYLASE; ACTIVATED PROTEIN-KINASE; HYPOXIA-INDUCIBLE FACTOR; CALORIE RESTRICTION; SIR2; HOMOLOG; HISTONE ACETYLTRANSFERASES; ISCHEMIA-REPERFUSION; CARDIAC-HYPERTROPHY; NEGATIVE REGULATOR; OXIDATIVE STRESS;
D O I
10.1161/CIRCRESAHA.109.204974
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
There is emerging recognition of a novel fuel and redox sensing regulatory program that controls cellular adaptation via nonhistone protein lysine residue acetyl posttranslation modifications. This program functions in tissues with high energy demand and oxidative capacity and is highly enriched in the heart. Deacetylation is regulated by NAD(+)-dependent activation of the sirtuin family of proteins, whereas acetyltransferase modifications are controlled by less clearly delineated acetyltransferases. Subcellular localization specific protein targets of lysine-acetyl modification have been identified in the nucleus, cytoplasm, and mitochondria. Despite distinct subcellular localizations, these modifications appear, in large part, to modify mitochondrial properties including respiration, energy production, apoptosis, and antioxidant defenses. These mitochondrial regulatory programs are important in cardiovascular biology, although how protein acetyl modifications effects cardiovascular pathophysiology has not been extensively explored. This review will introduce the role of nonhistone protein lysine residue acetyl modifications, discuss their regulation and biochemistry and present the direct and indirect data implicating their involvement in the heart and vasculature. (Circ Res. 2009; 105: 830-841.)
引用
收藏
页码:830 / 841
页数:12
相关论文
共 130 条
[1]   A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J].
Ahn, Bong-Hyun ;
Kim, Hyun-Seok ;
Song, Shiwei ;
Lee, In Hye ;
Liu, Jie ;
Vassilopoulos, Athanassios ;
Deng, Chu-Xia ;
Finkel, Toren .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14447-14452
[2]   Sirt1 regulates aging and resistance to oxidative stress in the heart [J].
Alcendor, Ralph R. ;
Gao, Shumin ;
Zhai, Peiyong ;
Zablocki, Daniela ;
Holle, Eric ;
Yu, Xianzhong ;
Tian, Bin ;
Wagner, Thomas ;
Vatner, Stephen F. ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2007, 100 (10) :1512-1521
[3]   Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes [J].
Alcendor, RR ;
Kirshenbaum, LA ;
Imai, S ;
Vatner, SF ;
Sadoshima, J .
CIRCULATION RESEARCH, 2004, 95 (10) :971-980
[4]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[5]   Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Cohen, H ;
Lin, SS ;
Manchester, JK ;
Gordon, JI ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) :18881-18890
[6]   The MYST family of histone acetyltransferases and their intimate links to cancer [J].
Avvakumov, N. ;
Cote, J. .
ONCOGENE, 2007, 26 (37) :5395-5407
[7]   Resveratrol improves health and survival of mice on a high-calorie diet [J].
Baur, Joseph A. ;
Pearson, Kevin J. ;
Price, Nathan L. ;
Jamieson, Hamish A. ;
Lerin, Carles ;
Kalra, Avash ;
Prabhu, Vinayakumar V. ;
Allard, Joanne S. ;
Lopez-Lluch, Guillermo ;
Lewis, Kaitlyn ;
Pistell, Paul J. ;
Poosala, Suresh ;
Becker, Kevin G. ;
Boss, Olivier ;
Gwinn, Dana ;
Wang, Mingyi ;
Ramaswamy, Sharan ;
Fishbein, Kenneth W. ;
Spencer, Richard G. ;
Lakatta, Edward G. ;
Le Couteur, David ;
Shaw, Reuben J. ;
Navas, Placido ;
Puigserver, Pere ;
Ingram, Donald K. ;
de Cabo, Rafael ;
Sinclair, David A. .
NATURE, 2006, 444 (7117) :337-342
[8]   Disruption of the Ang II type 1 receptor promotes longevity in mice [J].
Benigni, Ariela ;
Corna, Daniela ;
Zoja, Carla ;
Sonzogni, Aurelio ;
Latini, Roberto ;
Salio, Monica ;
Conti, Sara ;
Rottoli, Daniela ;
Longaretti, Lorena ;
Cassis, Paola ;
Morigi, Marina ;
Coffman, Thomas M. ;
Remuzzi, Giuseppe .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :524-530
[9]   Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms [J].
Berger, F ;
Lau, C ;
Dahlmann, M ;
Ziegler, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (43) :36334-36341
[10]   Catalysis and substrate selection by histone/protein lysine acetyltransferases [J].
Berndsen, Christopher E. ;
Denu, John M. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (06) :682-689