A poly-quadratic stability based approach for linear switched systems

被引:37
作者
Daafouz, J
Millerioux, G
Iung, C
机构
[1] ENSEM, CNRS, UMR 7039, CRAN, F-54516 Vandoeuvre Les Nancy, France
[2] ESSTIN, CNRS, UMR 7039, CRAN, F-54500 Vandoeuvre Les Nancy, France
关键词
D O I
10.1080/0020717021000023735
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a link between poly-quadratic stability and stability of arbitrary switching systems is established. Polyquadratic stability aims to check asymptotic stability of a polytopic system by means of polytopic quadratic Lyapunov functions. The necessary and sufficient condition of poly-quadratic stability proposed in Daafouz and Bernussou (2001) is shown to be immediately applicable to a class of switched control and observer design problems. Chaos synchronization for which the transmitter is described by a piecewise linear map is presented as an application.
引用
收藏
页码:1302 / 1310
页数:9
相关论文
共 19 条
[1]   On strict positive real systems design: guaranteed cost and robustness issues [J].
Bernussou, J ;
Geromel, JC ;
de Oliveira, MC .
SYSTEMS & CONTROL LETTERS, 1999, 36 (02) :135-141
[2]  
BLONDEL VD, 1999, OPEN PROBLEMS MATH S
[3]  
BOYD S, 1994, STUDIES APPL MATH, V66
[4]   Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J].
Branicky, MS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :475-482
[5]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[6]   Synchronizing hyperchaotic volume-preserving maps and circuits [J].
Carroll, TL ;
Pecora, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (06) :656-659
[7]   Sufficient LMI conditions for output feedback control problems [J].
Crusius, CAR ;
Trofino, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :1053-1057
[8]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[9]  
DEOLIVEIRA MC, LMI SOLVER
[10]  
Hasler M., 1996, P IEEE WORKSH NONL D, P161