Microscale patterning of organic films on carbon surfaces using electrochemistry and soft lithography

被引:53
作者
Downard, Alison J. [1 ]
Garrett, David J. [1 ]
Tan, Emelyn S. Q. [1 ]
机构
[1] Univ Canterbury, Dept Chem, MacDiarmid Inst Adv Mat & Nanotechnol, Christchurch 1, New Zealand
关键词
D O I
10.1021/la061148k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have demonstrated three simple strategies employing poly(dimethylsiloxane) (PDMS) molds for patterning carbon surfaces with two different modifiers in an 18 mu m line pattern. The PDMS molds are patterned with microfluidic channels (approximately 22 mu m wide and 49 mu m deep) and form a reversible, conformal seal to the pyrolyzed photoresist film (PPF) and modified PPF surfaces. Modifiers are electrochemically grafted to the PPF surface by the reduction of aryl diazonium salts and the oxidation of primary amines. For the fill-in patterning approach, the first modifier is electrografted to the PPF surface exposed within the microchannels, and in a second grafting step after removal of the PDMS mold, the second modifier fills in the remaining surface. The selective conversion strategy involves electrografting a continuous film of the modifier to the PPF surface, sealing the PDMS mold to the modified surface and carrying out an irreversible electrochemical reaction of the modifier exposed within the microchannels. In the build-up patterning approach, the PDMS mold is sealed to the modified PPF surface, and a chemical coupling reaction is effected in the microchannels to build up the pattern. The patterns are characterized using SEM, optical microscopy, the formation of condensation figures, and SEM imaging after the assembly of Au nanoparticles.
引用
收藏
页码:10739 / 10746
页数:8
相关论文
共 52 条
[1]   Grafting of nitrophenyl groups on carbon and metallic surfaces without electrochemical induction [J].
Adenier, A ;
Cabet-Deliry, E ;
Chaussé, A ;
Griveau, S ;
Mercier, F ;
Pinson, J ;
Vautrin-Ul, C .
CHEMISTRY OF MATERIALS, 2005, 17 (03) :491-501
[2]   Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces [J].
Adenier, A ;
Chehimi, MM ;
Gallardo, I ;
Pinson, J ;
Vilà, N .
LANGMUIR, 2004, 20 (19) :8243-8253
[3]   Covalent modification of iron surfaces by electrochemical reduction of aryldiazonium salts [J].
Adenier, A ;
Bernard, MC ;
Chehimi, MM ;
Cabet-Deliry, E ;
Desbat, B ;
Fagebaume, O ;
Pinson, J ;
Podvorica, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (19) :4541-4549
[4]   Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts [J].
Allongue, P ;
Delamar, M ;
Desbat, B ;
Fagebaume, O ;
Hitmi, R ;
Pinson, J ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (01) :201-207
[5]   Organic monolayers on Si(111) by electrochemical method [J].
Allongue, P ;
de Villeneuve, CH ;
Pinson, J ;
Ozanam, F ;
Chazalviel, JN ;
Wallart, X .
ELECTROCHIMICA ACTA, 1998, 43 (19-20) :2791-2798
[6]   Mono- and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy "scratching" [J].
Anariba, F ;
DuVall, SH ;
McCreery, RL .
ANALYTICAL CHEMISTRY, 2003, 75 (15) :3837-3844
[7]   Derivatization of carbon surfaces by anodic oxidation of arylacetates. Electrochemical manipulation of the grafted films [J].
Andrieux, CP ;
Gonzalez, F ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (18) :4292-4300
[8]   ANION-EXCHANGE ACTIVITY OF ELECTROCHEMICALLY BONDED ETHYLENE DIAMINE ON CARBON-FIBERS [J].
ANTONIADOU, S ;
JANNAKOUDAKIS, AD ;
JANNAKOUDAKIS, PD ;
THEODORIDOU, E .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1992, 22 (11) :1060-1064
[9]   ELECTROCHEMICAL BONDING OF AMINES TO CARBON-FIBER SURFACES TOWARD IMPROVED CARBON-EPOXY COMPOSITES [J].
BARBIER, B ;
PINSON, J ;
DESARMOT, G ;
SANCHEZ, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (06) :1757-1764
[10]   Dopamine adsorption at surface modified carbon-fiber electrodes [J].
Bath, BD ;
Martin, HB ;
Wightman, RM ;
Anderson, MR .
LANGMUIR, 2001, 17 (22) :7032-7039