Kainate receptors differentially regulate release at two parallel fiber synapses

被引:75
作者
Delaney, AJ [1 ]
Jahr, CE [1 ]
机构
[1] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97201 USA
关键词
D O I
10.1016/S0896-6273(02)01008-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Presynaptic kainate receptors (KARs) facilitate or depress transmitter release at several synapses in the CNS. Here, we report that synaptically activated KARs presynaptically facilitate and depress transmission at parallel fiber synapses in the cerebellar cortex. Low-frequency stimulation of parallel fibers facilitates synapses onto both stellate cells and Purkinje cells, whereas high-frequency stimulation depresses stellate cell synapses but continues to facilitate Purkinje cell synapses. These effects are mimicked by exogenous KAR agonists and eliminated by blocking KARs. This differential frequency-dependent sensitivity of these two synapses regulates the balance of excitatory and inhibitory input to Purkinje cells and therefore their excitability.
引用
收藏
页码:475 / 482
页数:8
相关论文
共 33 条
[1]   Extrasynaptic glutamate spillover in the hippocampus: Dependence on temperature and the role of active glutamate uptake [J].
Asztely, F ;
Erdemli, G ;
Kullmann, DM .
NEURON, 1997, 18 (02) :281-293
[2]  
BAHN S, 1994, J NEUROSCI, V14, P5525
[3]   SYNAPTIC ACTIVATION OF METABOTROPIC GLUTAMATE RECEPTORS IN THE PARALLEL FIBER-PURKINJE CELL PATHWAY IN RAT CEREBELLAR SLICES [J].
BATCHELOR, AM ;
MADGE, DJ ;
GARTHWAITE, J .
NEUROSCIENCE, 1994, 63 (04) :911-915
[4]   CLONING OF A NOVEL GLUTAMATE RECEPTOR SUBUNIT, GLUR5 - EXPRESSION IN THE NERVOUS-SYSTEM DURING DEVELOPMENT [J].
BETTLER, B ;
BOULTER, J ;
HERMANSBORGMEYER, I ;
OSHEAGREENFIELD, A ;
DENERIS, ES ;
MOLL, C ;
BORGMEYER, U ;
HOLLMANN, M ;
HEINEMANN, S .
NEURON, 1990, 5 (05) :583-595
[5]   Regulation of glutamate release by presynaptic kainate receptors in the hippocampus [J].
Chittajallu, R ;
Vignes, M ;
Dev, KK ;
Barnes, JM ;
Collingridge, GL ;
Henley, JM .
NATURE, 1996, 379 (6560) :78-81
[6]   Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus [J].
Contractor, A ;
Swanson, GT ;
Sailer, A ;
O'Gorman, S ;
Heinemann, SF .
JOURNAL OF NEUROSCIENCE, 2000, 20 (22) :8269-8278
[7]   Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus [J].
Contractor, A ;
Swanson, G ;
Heinemann, SF .
NEURON, 2001, 29 (01) :209-216
[8]  
Dehnes Y, 1998, J NEUROSCI, V18, P3606
[9]   CLONING OF A CDNA FOR A GLUTAMATE RECEPTOR SUBUNIT ACTIVATED BY KAINATE BUT NOT AMPA [J].
EGEBJERG, J ;
BETTLER, B ;
HERMANSBORGMEYER, I ;
HEINEMANN, S .
NATURE, 1991, 351 (6329) :745-748
[10]   KA1-like kainate receptor subunit immunoreactivity in neurons and glia using a novel anti-peptide antibody [J].
Fogarty, DJ ;
Pérez-Cerdá, F ;
Matute, C .
MOLECULAR BRAIN RESEARCH, 2000, 81 (1-2) :164-176