Photonic metamaterials: Magnetism at optical frequencies

被引:163
作者
Linden, Stefan [1 ]
Enkrich, Christian
Dolling, Gunnar
Klein, Matthias W.
Zhou, Jiangfeng
Koschny, Thomas
Soukoulis, Costas M.
Burger, Sven
Schmidt, Frank
Wegener, Martin
机构
[1] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Univ Karlsruhe, Inst Angew Phys, D-76131 Karlsruhe, Germany
[3] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA
[5] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[6] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[7] Univ Crete, Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece
[8] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece
[9] Zuse Inst Berlin, D-14195 Berlin, Germany
[10] DFG Forschungszentrum Matheon, D-10623 Berlin, Germany
[11] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
metamaterial; negative permeability; split-ring resonator (SRR);
D O I
10.1109/JSTQE.2006.880600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic metamaterials are man-made materials with "lattice constants" smaller than the wavelength of light. Tailoring the properties of their functional building blocks (atoms) allows one to go beyond the possibilities of usual materials. For example, magnetic dipole moments at optical frequencies (mu not equal 1) become possible. This aspect substantially enriches the possibilities of optics and photonics and forms the basis for the so-called negative-index metamaterials. Here, we describe the underlying physics and review the recent progress in this rapidly emerging field.
引用
收藏
页码:1097 / 1105
页数:9
相关论文
共 35 条
[1]  
BURGER S, 2005, P SOC PHOTO-OPT INS, V5955, P18
[2]  
BUSCH K, UNPUB PHYS REP
[3]   Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials [J].
Dolling, G ;
Enkrich, C ;
Wegener, M ;
Zhou, JF ;
Soukoulis, CM .
OPTICS LETTERS, 2005, 30 (23) :3198-3200
[4]   Simultaneous negative phase and group velocity of light in a metamaterial [J].
Dolling, G ;
Enkrich, C ;
Wegener, M ;
Soukoulis, CM ;
Linden, S .
SCIENCE, 2006, 312 (5775) :892-894
[5]   Low-loss negative-index metamaterial at telecommunication wavelengths [J].
Dolling, Gunnar ;
Enkrich, Christian ;
Wegener, Martin ;
Soukoulis, Costas M. ;
Linden, Stefan .
OPTICS LETTERS, 2006, 31 (12) :1800-1802
[6]   Experimental verification of an optical negative-index material [J].
Drachev, VP ;
Cai, W ;
Chettiar, U ;
Yuan, HK ;
Sarychev, AK ;
Kildishev, AV ;
Klimeck, G ;
Shalaev, VM .
LASER PHYSICS LETTERS, 2006, 3 (01) :49-55
[7]   Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials [J].
Enkrich, C ;
Pérez-Willard, R ;
Gerthsen, D ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM ;
Wegener, M ;
Linden, S .
ADVANCED MATERIALS, 2005, 17 (21) :2547-+
[8]   Magnetic metamaterials at telecommunication and visible frequencies [J].
Enkrich, C ;
Wegener, M ;
Linden, S ;
Burger, S ;
Zschiedrich, L ;
Schmidt, F ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[9]   Design and fabrication of copper-film loop-gap resonators [J].
Ghim, BT ;
Rinard, GA ;
Quine, RW ;
Eaton, SS ;
Eaton, GR .
JOURNAL OF MAGNETIC RESONANCE SERIES A, 1996, 120 (01) :72-76
[10]   Effective magnetic properties of a composite material with circular conductive elements [J].
Gorkunov, M ;
Lapine, M ;
Shamonina, E ;
Ringhofer, KH .
EUROPEAN PHYSICAL JOURNAL B, 2002, 28 (03) :263-269