Approximation of min-max and min-max regret versions of some combinatorial optimization problems

被引:37
作者
Aissi, Hassene [1 ]
Bazgan, Cristina [1 ]
Vanderpooten, Daniel [1 ]
机构
[1] Univ Paris 09, LAMSADE, F-75775 Paris 16, France
关键词
min-max; min-max regret; approximation; fptas; shortest path; minimum spanning tree; knapsack;
D O I
10.1016/j.ejor.2006.03.023
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper investigates, for the first time in the literature, the approximation of min-max (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a constant number of scenarios, we establish fully polynomial-time approximation schemes for the min-max versions of these problems, using relationships between multi-objective and min-max optimization. Using dynamic programming and classical trimming techniques, we construct a fully polynomial-time approximation scheme for min-max regret shortest path. We also establish a fully polynomial-time approximation scheme for min-max regret spanning tree and prove that min-max regret knapsack is not at all approximable. For a non-constat number of scenarios, in which case min max and min-max regret versions of polynomial-time solvable problems usually become strongly NP-hard, non-approximability results are provided for min-max (regret) versions of shortest path and spanning tree. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1997, APPROXIMATION ALGORI
[2]  
Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[3]   EXACT ARBORESCENCES, MATCHINGS AND CYCLES [J].
BARAHONA, F ;
PULLEYBLANK, WR .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (02) :91-99
[4]   Approximating multiobjective knapsack problems [J].
Erlebach, T ;
Kellerer, H ;
Pferschy, U .
MANAGEMENT SCIENCE, 2002, 48 (12) :1603-1612
[5]  
Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[6]   A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem [J].
Hong, SP ;
Chung, SJ ;
Park, BH .
OPERATIONS RESEARCH LETTERS, 2004, 32 (03) :233-239
[7]  
Karp R. M., 1972, COMPLEXITY COMPUTER, P85, DOI DOI 10.1007/978-1-4684-2001-2_9
[8]  
Kouvelis P., 1997, ROBUST DISCRETE OPTI
[9]  
Mahajan M, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P730
[10]  
Papadimitriou CH, 2000, ANN IEEE SYMP FOUND, P86