Decoding flexion of individual fingers using electrocorticographic signals in humans

被引:211
作者
Kubanek, J. [1 ,2 ,3 ]
Miller, K. J. [4 ,5 ]
Ojemann, J. G. [6 ]
Wolpaw, J. R. [1 ]
Schalk, G. [1 ,7 ,8 ,9 ,10 ]
机构
[1] New York State Dept Hlth, Wadsworth Ctr, BCI R&D Program, Albany, NY 12237 USA
[2] Washington Univ, Dept Biomed Engn, St Louis, MO USA
[3] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
[4] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[5] Univ Washington, Dept Med, Seattle, WA 98195 USA
[6] Univ Washington, Sch Med, Dept Neurosurg, Seattle, WA 98195 USA
[7] Albany Med Coll, Dept Neurol, Albany, NY 12208 USA
[8] Washington Univ, Dept Neurosurg, St Louis, MO USA
[9] SUNY Albany, Dept Biomed Sci, Albany, NY USA
[10] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
BRAIN-COMPUTER-INTERFACE; CORTEX HAND AREA; NEURAL PROSTHETIC DEVICES; MOTOR CORTEX; MOVEMENT TRAJECTORIES; SPECTRAL-ANALYSIS; CORTICAL CONTROL; REPRESENTATION; CLASSIFICATION; LOCALIZATION;
D O I
10.1088/1741-2560/6/6/066001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.
引用
收藏
页数:14
相关论文
共 79 条
[1]   Decoding individuated finger movements using volume-constrained neuronal. ensembles in the M1 hand area [J].
Acharya, Soumyadipta ;
Tenore, Francesco ;
Aggarwal, Vikrarn ;
Etienne-Cummings, Ralph ;
Schieber, Marc H. ;
Thakor, Nitish V. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (01) :15-23
[2]   Asynchronous decoding of dexterous finger movements using M1 neurons [J].
Aggarwal, Vikram ;
Acharya, Soumyadipta ;
Tenore, Francesco ;
Shin, Hyun-Chool ;
Etienne-Cummings, Ralph ;
Schieber, Marc H. ;
Thakor, Nitish V. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (01) :3-14
[3]   Selecting the signals for a brain-machine interface [J].
Andersen, RA ;
Musallam, S ;
Pesaran, B .
CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (06) :720-726
[4]  
[Anonymous], Data Mining Practical Machine Learning Tools and Techniques with Java
[5]  
Ball T., 2004, Biomed. Tech, V49, P756
[6]   Motor representation of the hand in the human cortex: an f-MRI study with a conventional 1.5 T clinical unit [J].
Beltramello, A ;
Cerini, R ;
Puppini, G ;
El-Dalati, G ;
Viola, S ;
Martone, E ;
Cordopatri, D ;
Manfredi, M ;
Aglioti, S ;
Tassinari, G .
ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES, 1998, 19 (05) :277-284
[7]   Decoding M1 neurons during multiple finger movements [J].
Ben Hamed, S. ;
Schieber, M. H. ;
Pouget, A. .
JOURNAL OF NEUROPHYSIOLOGY, 2007, 98 (01) :327-333
[8]   A spelling device for the paralysed [J].
Birbaumer, N ;
Ghanayim, N ;
Hinterberger, T ;
Iversen, I ;
Kotchoubey, B ;
Kübler, A ;
Perelmouter, J ;
Taub, E ;
Flor, H .
NATURE, 1999, 398 (6725) :297-298
[9]   The Berlin brain-computer interface:: EEG-based communication without subject training [J].
Blankertz, Benjamin ;
Dornhege, Guido ;
Krauledat, Matthias ;
Mueller, Klaus-Robert ;
Kunzmann, Volker ;
Losch, Florian ;
Curio, Gabriel .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :147-152
[10]  
BRINDLEY GS, 1972, J PHYSIOL-LONDON, V223, pP28