Localization of glucokinase gene expression in the rat brain

被引:138
作者
Lynch, RM [1 ]
Tompkins, LS
Brooks, HL
Dunn-Meynell, AA
Levin, BE
机构
[1] Univ Arizona, Arizona Hlth Sci Ctr, Dept Physiol, Tucson, AZ 85724 USA
[2] Univ Arizona, Arizona Hlth Sci Ctr, Dept Pharmacol, Tucson, AZ 85724 USA
[3] Dept Vet Affairs Med Ctr, Neurol Serv, E Orange, NJ USA
[4] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Neurosci, Newark, NJ 07103 USA
关键词
D O I
10.2337/diabetes.49.5.693
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The brain contains a subpopulation of glucosensing neurons that alter their firing rate in response to elevated glucose concentrations. In pancreatic beta-cells, glucokinase (GK), the rate-limiting enzyme in glycolysis, mediates glucose-induced insulin release by regulating intracellular ATP production. A similar role for GK is proposed to underlie neuronal glucosensing. Via in situ hybridization, GR mRNA was localized to hypothalamic areas that are thought to contain relatively large populations of glucosensing neurons (the arcuate, ventromedial, dorsomedial, and paraventricular nuclei and the lateral area). GK also was found in brain areas without known glucosensing neurons (the lateral habenula, the bed nucleus stria terminalis, the inferior olive, the retrochiasmatic and medial preoptic areas, and the thalamic posterior paraventricular, interpeduncular, oculomotor, and anterior olfactory nuclei). Conversely, GK message was not found in the nucleus tractus solitarius, which contains glucosensing neurons, or in ependymal cells lining the third ventricle, where others have described its presence. In the arcuate nucleus, >75% of neuropeptide Y-positive neurons also expressed GK, and most GK(+) neurons also expressed KIR6.2 (the pore-forming subunit of the ATP-sensitive K+ channel), The anatomic distribution of GK mRNA mas confirmed in micropunch samples of hypothalamus via reverse transcription-polymerase chain reaction (RT-PCR). Nucleotide sequencing of the recovered PCR product indicated identity with nucleotides 1092-1411 (within exon 9 and 10) of hepatic and beta-cell GK. The specific anatomic localization of GK mRNA in hypothalamic areas known to contain glucosensing neurons and the coexpression of KIR6.2 and NPY in GK(+) neurons support a role for GK as a primary determinant of glucosensing in neuropeptide neurons that integrate multiple signals relating to peripheral energy metabolism.
引用
收藏
页码:693 / 700
页数:8
相关论文
共 62 条
[1]   ARCUATE NUCLEUS NEURONS THAT PROJECT TO THE HYPOTHALAMIC PARAVENTRICULAR NUCLEUS - NEUROPEPTIDERGIC IDENTITY AND CONSEQUENCES OF ADRENALECTOMY ON MESSENGER-RNA LEVELS IN THE RAT [J].
BAKER, RA ;
HERKENHAM, M .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 358 (04) :518-530
[2]   Differential effects of overexpressed glucokinase and hexokinase I in isolated islets - Evidence for functional segregation of the high and low K-m enzymes [J].
Becker, TC ;
Noel, RJ ;
Johnson, JH ;
Lynch, RM ;
Hirose, H ;
Tokuyama, Y ;
Bell, GI ;
Newgard, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (01) :390-394
[3]   INHIBITION OF INTRACTABLE NUCLEASES WITH RIBONUCLEOSIDE-VANADYL COMPLEXES - ISOLATION OF MESSENGER RIBONUCLEIC-ACID FROM RESTING LYMPHOCYTES [J].
BERGER, SL ;
BIRKENMEIER, CS .
BIOCHEMISTRY, 1979, 18 (23) :5143-5149
[4]   VENTROMEDIAL HYPOTHALAMIC-LESIONS IN RATS SUPPRESS COUNTERREGULATORY RESPONSES TO HYPOGLYCEMIA [J].
BORG, WP ;
DURING, MJ ;
SHERWIN, RS ;
BORG, MA ;
BRINES, ML ;
SHULMAN, GI .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (04) :1677-1682
[5]   LOCAL VENTROMEDIAL HYPOTHALAMUS GLUCOPENIA TRIGGERS COUNTERREGULATORY HORMONE-RELEASE [J].
BORG, WP ;
SHERWIN, RS ;
DURING, MJ ;
BORG, MA ;
SHULMAN, GI .
DIABETES, 1995, 44 (02) :180-184
[6]   ALTERED EXPRESSION OF HYPOTHALAMIC NEUROPEPTIDE MESSENGER-RNAS IN FOOD-RESTRICTED AND FOOD-DEPRIVED RATS [J].
BRADY, LS ;
SMITH, MA ;
GOLD, PW ;
HERKENHAM, M .
NEUROENDOCRINOLOGY, 1990, 52 (05) :441-447
[7]   ONLINE CONTINUOUS MEASUREMENT OF BLOOD-GLUCOSE AND MEAL PATTERN IN FREE-FEEDING RATS - THE ROLE OF GLUCOSE IN MEAL INITIATION [J].
CAMPFIELD, LA ;
BRANDON, P ;
SMITH, FJ .
BRAIN RESEARCH BULLETIN, 1985, 14 (06) :605-616
[8]   Novel insulinoma cell lines produced by iterative engineering of GLUT2, glucokinase, and human insulin expression [J].
Clark, SA ;
Quaade, C ;
Constandy, H ;
Hansen, P ;
Halban, P ;
Ferber, S ;
Newgard, CB ;
Normington, K .
DIABETES, 1997, 46 (06) :958-967
[9]   P1B15 - A CDNA CLONE OF THE RAT MESSENGER-RNA ENCODING CYCLOPHILIN [J].
DANIELSON, PE ;
FORSSPETTER, S ;
BROW, MA ;
CALAVETTA, L ;
DOUGLASS, J ;
MILNER, RJ ;
SUTCLIFFE, JG .
DNA-A JOURNAL OF MOLECULAR & CELLULAR BIOLOGY, 1988, 7 (04) :261-267
[10]   HUMAN AND RAT BETA-CELLS DIFFER IN GLUCOSE-TRANSPORTER BUT NOT IN GLUCOKINASE GENE-EXPRESSION [J].
DEVOS, A ;
HEIMBERG, H ;
QUARTIER, E ;
HUYPENS, P ;
BOUWENS, L ;
PIPELEERS, D ;
SCHUIT, F .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (05) :2489-2495