Multiple receptors underlie glutamate taste responses in mice

被引:53
作者
Yasumatsu, Keiko [1 ]
Horio, Nao [1 ]
Murata, Yoshihiro [1 ]
Shirosaki, Shinya [1 ]
Ohkuri, Tadahiro [1 ]
Yoshida, Ryusuke [1 ]
Ninomiya, Yuzo [1 ]
机构
[1] Kyushu Univ, Grad Sch Dent Sci, Sect Oral Neurosci, Higashi Ku, Fukuoka 8128582, Japan
关键词
100TH ANNIVERSARY SYMPOSIUM; RAT GUSTATORY PAPILLAE; CHORDA TYMPANI FIBERS; UMAMI TASTE; MONOSODIUM GLUTAMATE; SWEET TASTE; BEHAVIORAL DISCRIMINATION; GASTROINTESTINAL FUNCTION; GLOSSOPHARYNGEAL NERVE; GURMARIN SENSITIVITY;
D O I
10.3945/ajcn.2009.27462J
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
L-Glutamate is known to elicit a unique taste, umami, that is distinct from the tastes of sweet, salty, sour, and bitter. Recent molecular studies have identified several candidate receptors for umami in taste cells, such as the heterodimer T1R1/T1R3 and brain-expressed and taste-expressed type 1 and 4 metabotropic glutamate receptors (brain-mGluR1, brain-mGluR4, taste-mGluR1, and taste-mGluR4). However, the relative contributions of these receptors to umami taste reception remain to be elucidated. We critically discuss data from recent studies in which mouse taste cell, nerve fiber, and behavioral responses to umami stimuli were measured to evaluate whether receptors other than T1R1/T1R3 are involved in umami responses. We particularly emphasized studies of umami responses in T1R3 knockout (KO) mice and studies of potential effects of mGluR antagonists on taste responses. The results of these studies indicate the existence of substantial residual responses to umami compounds in the T1R3-KO model and a significant reduction of umami responsiveness after administration of mGluR antagonists. These findings thus provide evidence of the involvement of mGluRs in addition to T1R1/T1R3 in umami detection in mice and suggest that umami responses, at least in mice, may be mediated by multiple receptors. Am J Clin Nutr 2009; 90(suppl): 747S-52S.
引用
收藏
页码:747S / 752S
页数:6
相关论文
共 81 条
[1]   Luminal chemosensing and upper gastrointestinal mucosal defenses [J].
Akiba, Yasutada ;
Kaunitz, Jonathan D. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :826S-831S
[2]   Glutamate taste and appetite in laboratory mice: physiologic and genetic analyses [J].
Bachmanov, Alexander A. ;
Inoue, Masashi ;
Ji, Hong ;
Murata, Yuko ;
Tordoff, Michael G. ;
Beauchamp, Gary K. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :756S-763S
[3]   Sensory and receptor responses to umami: an overview of pioneering work [J].
Beauchamp, Gary K. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :723S-727S
[4]   Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines [J].
Blachier, Francois ;
Boutry, Claire ;
Bos, Cecile ;
Tome, Daniel .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :814S-821S
[5]   Hepatic glutamate metabolism: a tale of 2 hepatocytes [J].
Brosnan, Margaret E. ;
Brosnan, John T. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :857S-861S
[6]   Metabolic fate and function of dietary glutamate in the gut [J].
Burrin, Douglas G. ;
Stoll, Barbara .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :850S-856S
[7]   The receptors and cells for mammalian taste [J].
Chandrashekar, Jayaram ;
Hoon, Mark A. ;
Ryba, Nicholas J. P. ;
Zuker, Charles S. .
NATURE, 2006, 444 (7117) :288-294
[8]   A metabotropic glutamate receptor variant functions as a taste receptor [J].
Chaudhari, N ;
Landin, MA ;
Roper, SD .
NATURE NEUROSCIENCE, 2000, 3 (02) :113-119
[9]  
Chaudhari N, 1996, J NEUROSCI, V16, P3817
[10]   Taste receptors for umami: the case for multiple receptors [J].
Chaudhari, Nirupa ;
Pereira, Elizabeth ;
Roper, Stephen D. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 90 (03) :738S-742S