Finite time blow-up for a Dyadic model of the Euler equations

被引:58
作者
Katz, NH [1 ]
Pavlovic, N
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1090/S0002-9947-04-03532-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a dyadic model for the Euler equations and the Navier-Stokes equations with hyper-dissipation in three dimensions. For the dyadic Euler equations we prove finite time blow-up. In the context of the dyadic Navier-Stokes equations with hyper-dissipation we prove finite time blow-up in the case when the dissipation degree is sufficiently small.
引用
收藏
页码:695 / 708
页数:14
相关论文
共 11 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]  
Cannone M., 2004, HDB MATH FLUID DYNAM, V3
[4]  
Fefferman C., 2000, EXISTENCE SMOOTHNESS
[5]  
FRIEDLANDER S, 2003, BLOW 3 DIMENSIONAL V
[6]  
Gledzer E. B., 1973, Soviet Physics - Doklady, V18, P216
[7]  
Kato T., 1975, Lecture Notes in Mathematics, V448, P25
[8]   A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation [J].
Katz, NH ;
Pavlovic, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) :355-379
[9]  
NAZAROV F, 2001, COMMUNICATION
[10]   TEMPORAL INTERMITTENCY IN THE ENERGY CASCADE PROCESS AND LOCAL LYAPUNOV ANALYSIS IN FULLY-DEVELOPED MODEL TURBULENCE [J].
OHKITANI, K ;
YAMADA, M .
PROGRESS OF THEORETICAL PHYSICS, 1989, 81 (02) :329-341