Plane waves: to infinity and beyond!

被引:55
作者
Marolf, D [1 ]
Ross, SF
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Durham, Dept Math Sci, Ctr Particle Theory, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0264-9381/19/24/302
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe the asymptotic boundary of the general homogeneous plane wave spacetime, using a construction of the 'points at infinity' from the causal structure of the spacetime as introduced by Geroch, Kronheimer and Penrose. We show that this construction agrees with the conformal boundary obtained by Berenstein and Nastase for the maximally supersymmetric ten-dimensional plane wave. We see in detail how the possibility of going beyond (or around) infinity arises from the structure of light cones. We also discuss the extension of the construction to time-dependent plane wave solutions, focusing on the examples obtained from the Penrose limit of D-p-branes.
引用
收藏
页码:6289 / 6302
页数:14
相关论文
共 31 条
[1]  
ALISHAHIHA M, 2002, HEPTH0207257
[2]   NONPERTURBATIVE COMPUTATION OF THE WEYL ANOMALY FOR A CLASS OF NONTRIVIAL BACKGROUNDS [J].
AMATI, D ;
KLIMCIK, C .
PHYSICS LETTERS B, 1989, 219 (04) :443-447
[3]  
BENA I, 2002, HEPTH0206195
[4]  
BERENSTEIN D, 2002, HEPTH0205048
[5]  
BERENSTEIN F, 2002, JHEP, V4, P13
[6]  
Blau M, 2002, J HIGH ENERGY PHYS
[7]   Penrose limits and maximal supersymmetry [J].
Blau, M ;
Figueroa-O'Farrill, J ;
Hull, C ;
Papadopoulos, G .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (10) :L87-L95
[8]  
BLAU M, 2002, HEPTH0202111
[9]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .3. EXACT PLANE WAVES [J].
BONDI, H ;
PIRANI, FAE ;
ROBINSON, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 251 (1267) :519-533
[10]  
BRECHER D, 2002, HEPTH0206045