Comparing solution methods for dynamic equilibrium economies

被引:152
作者
Aruoba, S. Boragan
Fernandez-Villaverde, Jesus
Rubio-Ramirez, Juan F.
机构
[1] Univ Penn, Dept Econ, Philadelphia, PA 19104 USA
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Fed Reserve Bank Atlanta, Atlanta, GA USA
基金
美国国家科学基金会;
关键词
dynamic equilibrium economies; computational methods; linear and nonlinear solution methods;
D O I
10.1016/j.jedc.2005.07.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper compares solution methods for dynamic equilibrium economies. We compute and simulate the stochastic neoclassical growth model with leisure choice using first, second, and fifth order perturbations in levels and in logs, the finite elements method, Chebyshev polynomials. and value function iteration for several calibrations. We document the performance of the methods in terms of computing time, implementation complexity, and accuracy, and we present some conclusions based on the reported evidence. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2477 / 2508
页数:32
相关论文
共 36 条
[1]  
[Anonymous], FINITE ELEMENT METHO
[2]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[3]  
Bender C. M., 1999, ADV MATH METHODS SCI, DOI DOI 10.1007/978-1-4757-3069-2
[4]  
BENITEZSILVA H, 2000, UNPUB COMP DISCRETE
[5]   THE SOLUTION OF LINEAR DIFFERENCE MODELS UNDER RATIONAL-EXPECTATIONS [J].
BLANCHARD, OJ ;
KAHN, CM .
ECONOMETRICA, 1980, 48 (05) :1305-1311
[6]  
Boyd J.P., 2001, Chebyshev and Fourier spectral methods
[7]  
Briggs W.L., 2000, A Multigrid Tutorial
[8]   AN OPTIMAL ONE-WAY MULTIGRID ALGORITHM FOR DISCRETE-TIME STOCHASTIC-CONTROL [J].
CHOW, CS ;
TSITSIKLIS, JN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (08) :898-914
[9]   LINEAR-QUADRATIC APPROXIMATION AND VALUE-FUNCTION ITERATION - A COMPARISON [J].
CHRISTIANO, LJ .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1990, 8 (01) :99-113
[10]   Algorithms for solving dynamic models with occasionally binding constraints [J].
Christiano, LJ ;
Fisher, JDM .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2000, 24 (08) :1179-1232