Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries

被引:67
作者
Burukhin, A [1 ]
Brylev, O
Hany, P
Churagulov, BR
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Inorgan Chem Div, Moscow 119899, Russia
[2] Moscow MV Lomonosov State Univ, Dept Mat Sci, Moscow 119899, Russia
[3] ENSEEG, LEPMI, F-38570 St Martin Dheres, France
关键词
LiCoO2; lithium batteries; hydrothermal synthesis;
D O I
10.1016/S0167-2738(02)00721-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrafine powders of LiCoO2 were prepared under mild hydrothermal conditions. Reactant mixtures of aqueous solutions of cobalt (II) nitrate, lithium hydroxide and hydrogen peroxide with different Co/Li and Co/H2O2 ratios were hydrothermally treated at 150-250 degreesC for 0.5-24 h in a Teflon-lined autoclave. Only HT-LiCoO2 phase. was observed by X-ray diffraction (XRD) analysis. Scanning (SEM) and transmission (TEM) electron microscopies revealed the formation of well-crystallized hexagonal platelike particles with average size 70-200 nm. The increase in LiOH concentration results in better crystallinity. Annealing of hydrothermally prepared LiCoO2 at 230 degreesC leads to decreasing initial capacity from 130 down to 120 mA h/g, but improves cyclability (fade rate drops from 3.1 to 1.6 mA h/g per cycle). Submicrometric particle size and high surface area results in good electrochemical properties for high discharge rate. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 263
页数:5
相关论文
共 12 条
[1]   Preparation of LiFeO2 with alpha-NaFeO2-type structure using a mixed-alkaline hydrothermal method [J].
Ado, K ;
Tabuchi, M ;
Kobayashi, H ;
Kageyama, H ;
Nakamura, O ;
Inaba, Y ;
Kanno, R ;
Takagi, M ;
Takeda, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (07) :L177-L180
[2]   Continuous production of LiCoO2 fine crystals for lithium batteries by hydrothermal synthesis under supercritical condition [J].
Adschiri, T ;
Hakuta, Y ;
Kanamura, K ;
Arai, K .
HIGH PRESSURE RESEARCH, 2001, 20 (1-6) :373-384
[3]   Lithium insertion into host materials: the key to success for Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Simon, B .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :3-22
[4]  
Byrappa K., 2001, HDB HYDROTHERMAL TEC
[5]   LOW-TEMPERATURE COBALT OXIDE AS RECHARGEABLE CATHODIC MATERIAL FOR LITHIUM BATTERIES [J].
GARCIA, B ;
FARCY, J ;
PEREIRARAMOS, JP ;
PERICHON, J ;
BAFFIER, N .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :373-377
[6]   Electrochemical properties of low temperature crystallized LiCoO2 [J].
Garcia, B ;
Farcy, J ;
PereiraRamos, JP ;
Baffier, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1179-1184
[7]   STRUCTURE AND ELECTROCHEMISTRY OF LITHIUM COBALT OXIDE SYNTHESIZED AT 400-DEGREES-C [J].
GUMMOW, RJ ;
THACKERAY, MM ;
DAVID, WIF ;
HULL, S .
MATERIALS RESEARCH BULLETIN, 1992, 27 (03) :327-337
[8]   Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions [J].
Larcher, D ;
Palacin, MR ;
Amatucci, GG ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (02) :408-417
[9]   LIXCOO2 "(OLESS-THANXLESS-THAN-OR-EQUAL-TO1) - A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH-ENERGY DENSITY [J].
MIZUSHIMA, K ;
JONES, PC ;
WISEMAN, PJ ;
GOODENOUGH, JB .
MATERIALS RESEARCH BULLETIN, 1980, 15 (06) :783-789
[10]   SYNTHESIS AND ELECTROCHEMISTRY OF SPINEL LT-LICOO2 [J].
ROSSEN, E ;
REIMERS, JN ;
DAHN, JR .
SOLID STATE IONICS, 1993, 62 (1-2) :53-60