Accurate In Silico log P Predictions: One Can't Embrace the Unembraceable

被引:28
作者
Tetko, Igor V. [1 ,2 ]
Poda, Gennadiy I. [3 ]
Ostermann, Claude [4 ]
Mannhold, Raimund [5 ]
机构
[1] German Res Ctr Environm Hlth GmbH, Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, D-85764 Neuherberg, Germany
[2] Inst Bioorgan Chem & Petrochem, UA-02660 Kiev, Ukraine
[3] Pfizer Global R&D, Chesterfield, MO 63017 USA
[4] Nycomed GmbH, D-78467 Constance, Germany
[5] Univ Dusseldorf, Mol Drug Res Grp, D-40225 Dusseldorf, Germany
来源
QSAR & COMBINATORIAL SCIENCE | 2009年 / 28卷 / 08期
关键词
Lipophilicity; Structure-property relationships; Computational chemistry; ASSOCIATIVE NEURAL NETWORKS; APPLICABILITY DOMAIN; LIPOPHILICITY; ALOGPS-2.1; CHEMISTRY; QSAR;
D O I
10.1002/qsar.200960003
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Prediction accuracy of in silico methods for physicochemical and ADMET properties of drugs is an actual matter of controversial discussions. With a particular concern on log P prediction methods, we discuss here, how understanding the limitations of methods, their applicability domains and their prediction accuracies, as well as the use of local models can help to establish accurate and meaningful in silico predictions.
引用
收藏
页码:845 / 849
页数:5
相关论文
共 13 条
[1]   Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups [J].
Ertl, P .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (02) :374-380
[2]   Calculation of Molecular Lipophilicity: State-of-the-Art and Comparison of Log P Methods on More Than 96,000 Compounds [J].
Mannhold, Raimund ;
Poda, Gennadiy I. ;
Ostermann, Claude ;
Tetko, Igor V. .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2009, 98 (03) :861-893
[3]   Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships - The report and recommendations of ECVAM Workshop 52 [J].
Netzeva, TI ;
Worth, AP ;
Aldenberg, T ;
Benigni, R ;
Cronin, MTD ;
Gramatica, P ;
Jaworska, JS ;
Kahn, S ;
Klopman, G ;
Marchant, CA ;
Myatt, G ;
Nikolova-Jeliazkova, N ;
Patlewicz, GY ;
Perkins, R ;
Roberts, DW ;
Schultz, TW ;
Stanton, DT ;
van de Sandt, JJM ;
Tong, WD ;
Veith, G ;
Yang, CH .
ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2005, 33 (02) :155-173
[4]   Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR [J].
Sheridan, RP ;
Feuston, BP ;
Maiorov, VN ;
Kearsley, SK .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (06) :1912-1928
[5]   Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis:: Focusing on applicability domain and overfitting by variable selection [J].
Tetko, Igor V. ;
Sushko, Iurii ;
Pandey, Anil Kumar ;
Zhu, Hao ;
Tropsha, Alexander ;
Papa, Ester ;
Oberg, Tomas ;
Todeschini, Roberto ;
Fourches, Denis ;
Varnek, Alexandre .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (09) :1733-1746
[6]   Calculation of lipophilicity for Pt(II) complexes: Experimental comparison of several methods [J].
Tetko, Igor V. ;
Jaroszewicz, Iwona ;
Platts, James A. ;
Kuduk-Jaworska, Janina .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2008, 102 (07) :1424-1437
[7]   Can we estimate the accuracy of ADME-Tox predictions? [J].
Tetko, Igor V. ;
Bruneau, Pierre ;
Mewes, Hans-Werner ;
Rohrer, Douglas C. ;
Poda, Gennadiy I. .
DRUG DISCOVERY TODAY, 2006, 11 (15-16) :700-707
[8]   Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database [J].
Tetko, IV ;
Bruneau, P .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 93 (12) :3103-3110
[9]   Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds [J].
Tetko, IV ;
Poda, GI .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (23) :5601-5604
[10]   Neural network studies. 4. Introduction to associative neural networks [J].
Tetko, IV .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (03) :717-728