Adaptive estimation with soft thresholding penalties

被引:24
作者
Loubes, JM
van de Geer, S
机构
[1] Univ Toulouse 3, Lab Stat & Probabilities, F-31062 Toulouse, France
[2] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
关键词
adaptive estimation; empirical process; penalty; rate of convergence; regression; soft thresholding;
D O I
10.1111/1467-9574.00212
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that various robust nonparametric regression estimators, such as the least absolute deviations estimator, can be made adaptive (up to logarithmic factors), by adding a soft thresholding type penalty to the loss function. As an example, we consider the situation where the roughness of the regression function is described by a single parameter p. The theory is complemented with a simulation study.
引用
收藏
页码:454 / 479
页数:26
相关论文
共 35 条
[1]  
[Anonymous], 2001, Journal of the European Mathematical Society, DOI DOI 10.1007/S100970100031
[2]  
[Anonymous], 1996, BERNOULLI
[3]   Model selection for regression on a fixed design [J].
Baraud, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (04) :467-493
[4]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[5]   APPROXIMATION OF DENSITY-FUNCTIONS BY SEQUENCES OF EXPONENTIAL-FAMILIES [J].
BARRON, AR ;
SHEU, CH .
ANNALS OF STATISTICS, 1991, 19 (03) :1347-1369
[6]  
Bergh J., 1976, INTERPOLATION SPACES
[7]  
BESOV OV, 1978, SCRIPTA SERIES MATH, V0001
[8]   An adaptive compression algorithm in Besov spaces [J].
Birgé, L ;
Massart, P .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) :1-36
[9]  
BIRGE L., 1997, FESTSCHRIFT L LECAM, P55
[10]  
Birman M.S., 1967, MAT SBORNIK, V73, P331