Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase

被引:165
作者
Matthews, PD
Wurtzel, ET
机构
[1] CUNY Herbert H Lehman Coll, Dept Biol Sci, Bronx, NY 10468 USA
[2] CUNY Grad Sch & Univ Ctr, Bronx, NY 10468 USA
关键词
D O I
10.1007/s002530051632
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The recently discovered non-mevalonate pathway to isoprenoids, which uses glycolytic intermediates, has been modulated by overexpression of Escherichia coli D-1-deoxyxylulose 5-phosphate synthase (DXS) to increase deoxyxylulose 5-phosphate and, consequently, increase the isoprenoid precursor pool in E. coli. Carotenoids are a large class of biologically important compounds synthesized from isoprenoid precursors and of interest for metabolic engineering. However, carotenoids are not ordinarily present in E. coli. Co-overexpression of E. coli dxs with Erwinia uredovora gene clusters encoding carotenoid biosynthetic enzymes led to an increased accumulation of the carotenoids lycopene or zeaxanthin over controls not expressing DXS. Thus, rate-controlling enzymes encoded by the carotenogenic gene clusters are responsive to an increase in isoprenoid precursor pools. Levels of accumulated carotenoids were increased up to 10.8 times the levels of controls not overexpressing DXS. Lycopene accumulated to a level as high as 1333 mu g/g dw and zeaxanthin accumulated to a level as high as 592 mu g/ g dw, when pigments were extracted from colonies. Zeaxanthin-producing colonies grew about twice as fast as lycopene-producing colonies throughout a time course of 11 days. Metabolic engineering of carbon flow from simple glucose metabolites to representatives of the largest class of natural products was demonstrated in this model system.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 24 条
[1]   Carotenoids .2. Genetics and molecular biology of carotenoid pigment biosynthesis [J].
Armstrong, GA ;
Hearst, JE .
FASEB JOURNAL, 1996, 10 (02) :228-237
[2]   Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis [J].
Burkhardt, PK ;
Beyer, P ;
Wunn, J ;
Kloti, A ;
Armstrong, GA ;
Schledz, M ;
vonLintig, J ;
Potrykus, I .
PLANT JOURNAL, 1997, 11 (05) :1071-1078
[3]   BIOCHEMISTRY AND MOLECULAR-BIOLOGY OF THE ISOPRENOID BIOSYNTHETIC-PATHWAY IN PLANTS [J].
CHAPPELL, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1995, 46 :521-547
[4]   Genes and enzymes of carotenoid biosynthesis in plants [J].
Cunningham, FX ;
Gantt, E .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :557-583
[5]  
DELEENHEER AP, 1992, METHOD ENZYMOL, V213, P251
[6]   FEEDBACK-REGULATION OF 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE IN SACCHAROMYCES-CEREVISIAE [J].
DIMSTERDENK, D ;
THORSNESS, MK ;
RINE, J .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (06) :655-665
[7]   Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli [J].
Kajiwara, S ;
Fraser, PD ;
Kondo, K ;
Misawa, N .
BIOCHEMICAL JOURNAL, 1997, 324 :421-426
[8]   A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway [J].
Lange, BM ;
Wildung, MR ;
McCaskill, D ;
Croteau, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :2100-2104
[9]   Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway [J].
Li, ZH ;
Matthews, PD ;
Burr, B ;
Wurtzel, ET .
PLANT MOLECULAR BIOLOGY, 1996, 30 (02) :269-279
[10]   The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants [J].
Lichtenthaler, HK .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :47-65