Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution

被引:209
作者
Kroemer, G [1 ]
机构
[1] CNRS UPR420, F-94801 VILLEJUIF, FRANCE
关键词
mitochondrial transmembrane potential; permeability transition; programmed cell death; proteases;
D O I
10.1038/sj.cdd.4400266
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent evidence indicates that a profound alteration in mitochondrial function constitutes an obligatory early event of the apoptotic process. The molecular mechanism accounting for this alteration is mitochondrial permeability transition (PT). PT is both sufficient and necessary for apoptosis to occur. Experiments performed in cell-free systems of apoptosis demonstrate that mitochondria undergoing PT release protease activators that can trigger nuclear manifestations of apoptotis, Bcl-2 and its homologs are endogenous regulators of PT. It appears that some types of necrosis, those inhibited by Bcl-2, involve PT. If PT is a rate-limiting event of both apoptosis and necrosis, then downstream events including caspase activation and the bioenergetic consequences of PT must determine the choice between both modes of cell death. PT without caspase activation would cause necrosis. These findings have important implications for the comprehension of the apoptotic process, for the dichotomy between apoptosis and necrosis, and for the phylogeny of programmed cell death. Apoptosis may have evolved together with the endosymbiotic incorporation of aerobic bacteria (the precursors of mitochondria) into ancestral unicellular eukaryotes.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 134 条
  • [1] Induction of the mitochondrial permeability transition by protease activity in rats: A mechanism of hepatocyte necrosis
    Aguilar, HI
    Botla, R
    Arora, AS
    Bronk, SF
    Gores, GJ
    [J]. GASTROENTEROLOGY, 1996, 110 (02) : 558 - 566
  • [2] AMEISEN JC, 1995, CELL DEATH DIFFER, V2, P285
  • [3] GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION
    ANKARCRONA, M
    DYPBUKT, JM
    BONFOCO, E
    ZHIVOTOVSKY, B
    ORRENIUS, S
    LIPTON, SA
    NICOTERA, P
    [J]. NEURON, 1995, 15 (04) : 961 - 973
  • [4] NUCLEOTIDE-SEQUENCE, ORGANIZATION, AND NATURE OF THE PROTEIN PRODUCTS OF THE CAROTENOID BIOSYNTHESIS GENE-CLUSTER OF RHODOBACTER-CAPSULATUS
    ARMSTRONG, GA
    ALBERTI, M
    LEACH, F
    HEARST, JE
    [J]. MOLECULAR & GENERAL GENETICS, 1989, 216 (2-3): : 254 - 268
  • [5] BARR PJ, 1994, BIO-TECHNOL, V12, P487, DOI 10.1038/nbt0594-487
  • [6] A CRUCIAL ROLE FOR NEUROTROPHIN-3 IN OLIGODENDROCYTE DEVELOPMENT
    BARRES, BA
    RAFF, MC
    GAESE, F
    BARTKE, I
    DECHANT, G
    BARDE, YA
    [J]. NATURE, 1994, 367 (6461) : 371 - 375
  • [7] BERNARDI P, 1992, J BIOL CHEM, V267, P2934
  • [8] BERNARDI P, 1992, J BIOL CHEM, V267, P8834
  • [9] The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal
    Bernardi, P
    Petronilli, V
    [J]. JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1996, 28 (02) : 131 - 138
  • [10] Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore
    Beutner, G
    Ruck, A
    Riede, B
    Welte, W
    Brdiczka, D
    [J]. FEBS LETTERS, 1996, 396 (2-3) : 189 - 195