Reduced graphene oxide for room-temperature gas sensors

被引:639
作者
Lu, Ganhua [1 ]
Ocola, Leonidas E. [2 ]
Chen, Junhong [1 ,3 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[3] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
GRAPHITE OXIDE; LARGE-AREA; FILMS; SHEETS; CONDUCTIVITY; REDUCTION; ROUTE; VAPOR;
D O I
10.1088/0957-4484/20/44/445502
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 degrees C) or one-step heating (200 degrees C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.
引用
收藏
页数:9
相关论文
共 40 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[7]   Mechanical properties of suspended graphene sheets [J].
Frank, I. W. ;
Tanenbaum, D. M. ;
Van der Zande, A. M. ;
McEuen, P. L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2558-2561
[8]   Substrate-limited electron dynamics in graphene [J].
Fratini, S. ;
Guinea, F. .
PHYSICAL REVIEW B, 2008, 77 (19)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398