Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo

被引:48
作者
Mochida, Michihiro [1 ]
Kuwata, Mikinori
Miyakawa, Takuma
Takegawa, Nobuyuki
Kawamura, Kimitaka
Kondo, Yutaka
机构
[1] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
[2] Univ Tokyo, Adv Sci & Technol Res Ctr, Tokyo 1538904, Japan
关键词
D O I
10.1029/2005JD006980
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
As described by the Kohler theory, the hygroscopicity of atmospheric aerosol particles is a key factor regulating their cloud condensation nuclei (CCN) activity. Here we investigated the relationship between hygroscopicity and CCN activity for urban aerosol particles using a hygroscopicity tandem differential mobility analyzer (HTDMA) coupled in series to a CCN counter. The HTDMA-CCNC system was operated near the center of the Tokyo metropolitan area from 10 to 17 November 2004. For aerosol particles whose dry mobility diameters were 30-200 nm, the ratios of CCN to condensation nuclei (CN) at 0.22-1.3% supersaturation were obtained as a function of particle hygroscopicity at 83 and 89% RH. More-hygroscopic particles were found to be more CCN active than less-hygroscopic particles of the same size, indicating that hygroscopicity is a critical factor regulating CCN activity. The chemical compositions of particles were simultaneously measured using an aerosol mass spectrometer. They were found to relate closely to CCN activity as well as to the hygroscopicity. The measured CCN-hygroscopicity relationships were compared to those predicted by Kohler theory. The results suggest that CCN activity is possibly perturbed by changes in surface tension due to organics, dissolution/dissociation of water-soluble organics under supersaturation conditions, or different nonideality of organics from inorganic salts. These factors associated with organics are potentially important for CCN activity and thus microphysical cloud processes in the atmosphere.
引用
收藏
页数:20
相关论文
共 57 条
[1]   Parameterization of the influence of organic surfactants on aerosol activation [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D3)
[2]   Nanosize effect on the hygroscopic growth factor of aerosol particles [J].
Biskos, G ;
Russell, LM ;
Buseck, PR ;
Martin, ST .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (07)
[3]  
Brechtel FJ, 2000, J ATMOS SCI, V57, P1854, DOI 10.1175/1520-0469(2000)057<1854:PPCSFH>2.0.CO
[4]  
2
[5]  
Brechtel FJ, 2000, J ATMOS SCI, V57, P1872, DOI 10.1175/1520-0469(2000)057<1872:PPCSFH>2.0.CO
[6]  
2
[7]   Mass transfer effects in hygroscopic measurements of aerosol particles [J].
Chan, MN ;
Chan, CK .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2703-2712
[8]   Measurement of the timescale of hygroscopic growth for atmospheric aerosols [J].
Chuang, PY .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[9]   Kinetic limitations on droplet formation in clouds [J].
Chuang, PY ;
Charlson, RJ ;
Seinfeld, JH .
NATURE, 1997, 390 (6660) :594-596
[10]   Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory [J].
DeCarlo, PF ;
Slowik, JG ;
Worsnop, DR ;
Davidovits, P ;
Jimenez, JL .
AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 (12) :1185-1205