In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils

被引:57
作者
Angel, Roey [1 ]
Conrad, Ralf [1 ]
机构
[1] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
关键词
16S RIBOSOMAL-RNA; ATMOSPHERIC METHANE; FOREST SOILS; METHANOTROPHIC BACTERIA; UPLAND SOILS; OXIDIZING BACTERIA; MOLECULAR ANALYSES; LAND-USE; CONSUMPTION; OXIDATION;
D O I
10.1111/j.1462-2920.2009.01984.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
P>Aerated soils are a biological sink for atmospheric methane. However, the activity of desert soils and the presence of methanotrophs in these soils have hardly been studied. We studied on-site atmospheric methane consumption rates as well as the diversity and expression of the pmoA gene, coding for a subunit of the particulate methane monooxygenase, in arid and hyperarid soils in the Negev Desert, Israel. Methane uptake was only detected in undisturbed soils in the arid region (similar to 90 mm year-1) and vertical methane profiles in soil showed the active layer to be at 0-20 cm depth. No methane uptake was detected in the hyperarid soils (similar to 20 mm year-1) as well as in disturbed soils in the arid region (i.e. agricultural field and a mini-catchment). Molecular analysis of the methanotrophic community using terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene detected methanotrophs in the active soils, whereas the inactive ones were dominated by sequences of the homologous gene amoA, coding for a subunit of the ammonia monooxygenase. Even in the active soils, methanotrophs (as well as in situ activity) could not be detected in the soil crust, which is the biologically most important layer in desert soils. All pmoA sequences belonged to yet uncultured strains. Transcript analysis showed dominance of sequences clustering within the JR3, formerly identified in Californian grassland soils. Our results show that although active methanotrophs are prevalent in arid soils they seem to be absent or inactive in hyperarid and disturbed arid soils. Furthermore, we postulate that methanotrophs of the yet uncultured JR3 cluster are the dominant atmospheric methane oxidizers in this ecosystem.
引用
收藏
页码:2598 / 2610
页数:13
相关论文
共 50 条
[1]   METHANE CONSUMPTION IN TEMPERATE AND SUB-ARCTIC FOREST SOILS - RATES, VERTICAL ZONATION, AND RESPONSES TO WATER AND NITROGEN [J].
ADAMSEN, APS ;
KING, GM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (02) :485-490
[2]   Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp strain SCZ [J].
Baani, Mohamed ;
Liesack, Werner .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (29) :10203-10208
[3]   KINETICS OF METHANE OXIDATION IN OXIC SOILS [J].
BENDER, M ;
CONRAD, R .
CHEMOSPHERE, 1993, 26 (1-4) :687-696
[5]   Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils [J].
Bourne, DG ;
McDonald, IR ;
Murrell, JC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (09) :3802-3809
[6]  
Bowman J, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 5, THIRD EDITION, P266, DOI 10.1007/0-387-30745-1_15
[7]   mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil [J].
Bürgmann, H ;
Widmer, F ;
Sigler, WV ;
Zeyer, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (04) :1928-1935
[8]   Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany [J].
Butterbach-Bahl, K ;
Papen, H .
PLANT AND SOIL, 2002, 240 (01) :77-90
[9]   Minimizing artifacts and biases in chamber-based measurements of soil respiration [J].
Davidson, EA ;
Savage, K ;
Verchot, LV ;
Navarro, R .
AGRICULTURAL AND FOREST METEOROLOGY, 2002, 113 (1-4) :21-37
[10]   Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities [J].
Dunbar, J ;
Ticknor, LO ;
Kuske, CR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (01) :190-197