Ni1-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane

被引:328
作者
Cheng, Fangyi [1 ]
Ma, Hua [1 ]
Li, Yueming [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Tianjin 300071, Peoples R China
关键词
D O I
10.1021/ic061712e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this paper, nest-like Ni1-xPtx (x = 0, 0.03, 0.06, 0.09, and 0.12) hollow spheres of submicrometer sizes have been prepared through a template-replacement route and investigated as catalysts for generating hydrogen from ammonia borane (NH3BH3). Experimental investigations have demonstrated that the obtained Ni1-xPtx alloy hollow spheres exhibit favorable catalytic activities for both the hydrolysis and the thermolysis of NH3BH3. It was found that, in the presence of the Ni0.88Pt0.12 catalyst, the hydrolysis of NH3BH3 causes a quick release of H-2, while the thermal decomposition of NH3BH3 occurs at lowered temperatures with increased mass loss. The present results indicate that NH3BH3 along with Ni1-xPtx alloy hollow spheres may find some applications for small-scale on-board hydrogen storage and supply.
引用
收藏
页码:788 / 794
页数:7
相关论文
共 43 条
[1]   Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods [J].
Baitalow, F ;
Baumann, J ;
Wolf, G ;
Jaenicke-Rössler, K ;
Leitner, G .
THERMOCHIMICA ACTA, 2002, 391 (1-2) :159-168
[2]   Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release [J].
Baumann, J ;
Baitalow, E ;
Wolf, G .
THERMOCHIMICA ACTA, 2005, 430 (1-2) :9-14
[3]   Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids [J].
Bluhm, Martin E. ;
Bradley, Mark G. ;
Butterick, Robert, III ;
Kusari, Upal ;
Sneddon, Larry G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (24) :7748-7749
[4]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[5]   A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane [J].
Chandra, Manish ;
Xu, Qiang .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :190-194
[6]   Hydrogen adsorption in an interpenetrated dynamic metal-organic framework [J].
Chen, Banglin ;
Ma, Shengqian ;
Zapata, Fatima ;
Lobkovsky, Emil B. ;
Yang, Jun .
INORGANIC CHEMISTRY, 2006, 45 (15) :5718-5720
[7]   Titanium disulfide nanotubes as hydrogen-storage materials [J].
Chen, J ;
Li, SL ;
Tao, ZL ;
Shen, YT ;
Cui, CX .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5284-5285
[8]   Electrochemical hydrogen storage in MoS2 nanotubes [J].
Chen, J ;
Kuriyama, N ;
Yuan, H ;
Takeshita, HT ;
Sakai, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (47) :11813-11814
[9]   Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6 [J].
Chen, J ;
Kuriyama, N ;
Xu, Q ;
Takeshita, HT ;
Sakai, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11214-11220
[10]   Interaction of hydrogen with metal nitrides and imides [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
NATURE, 2002, 420 (6913) :302-304