Metabolic remodeling of the human red blood cell membrane

被引:308
作者
Park, YongKeun [1 ,2 ]
Best, Catherine A. [4 ]
Auth, Thorsten [6 ,7 ]
Gov, Nir S. [8 ]
Safran, Samuel A. [7 ]
Popescu, Gabriel [5 ]
Suresh, Subra [1 ,3 ]
Feld, Michael S. [2 ]
机构
[1] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] MIT, George R Harrison Spect Lab, Cambridge, MA 02139 USA
[3] MIT, Sch Engn, Cambridge, MA 02139 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Coll Med, Urbana, IL 61801 USA
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Quantitat Light Imaging Lab, Urbana, IL 61801 USA
[6] Forschungszentrum Julich, Inst Solid State Res, D-52425 Julich, Germany
[7] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[8] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
基金
美国国家科学基金会; 美国国家卫生研究院; 以色列科学基金会;
关键词
ATP; imaging technique; membrane fluctuation; RBC; spectrin; MECHANICAL-PROPERTIES; DIFFRACTION PHASE; FLUCTUATIONS; MICROSCOPY; DYNAMICS; FLICKER;
D O I
10.1073/pnas.0910785107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The remarkable deformability of the human red blood cell (RBC) results from the coupled dynamic response of the phospholipid bilayer and the spectrin molecular network. Here we present quantitative connections between spectrin morphology and membrane fluctuations of human RBCs by using dynamic full-field laser interferometry techniques. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates non-equilibrium dynamic fluctuations in the RBC membrane that are highly correlated with the biconcave shape of RBCs. Spatial analysis of the fluctuations reveals that these non-equilibrium membrane vibrations are enhanced at the scale of spectrin mesh size. Our results indicate that the dynamic remodeling of the coupled membranes powered by ATP results in non-equilibrium membrane fluctuations manifesting from both metabolic and thermal energies and also maintains the biconcave shape of RBCs.
引用
收藏
页码:1289 / 1294
页数:6
相关论文
共 31 条
[1]  
Agre P., 1989, Red Blood Cell Membranes: Structure: Function: Clinical Implications
[2]   Fluctuations of coupled fluid and solid membranes with application to red blood cells [J].
Auth, Thorsten ;
Safran, S. A. ;
Gov, Nir S. .
PHYSICAL REVIEW E, 2007, 76 (05)
[3]   ATP-dependent mechanics of red blood cells [J].
Betz, Timo ;
Lenz, Martin ;
Joanny, Jean-Francois ;
Sykes, Cecile .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) :15320-15325
[4]  
BEUTLER E, 1995, WILLIAMS HEMATOLOGY, pCH22
[5]   FREQUENCY SPECTRUM OF FLICKER PHENOMENON IN ERYTHROCYTES [J].
BROCHARD, F ;
LENNON, JF .
JOURNAL DE PHYSIQUE, 1975, 36 (11) :1035-1047
[6]   Fluctuations of the red blood cell membrane: Relation to mechanical properties and lack of ATP dependence [J].
Evans, James ;
Gratzer, Walter ;
Mohandas, Narla ;
Parker, Kim ;
Sleep, John .
BIOPHYSICAL JOURNAL, 2008, 94 (10) :4134-4144
[7]  
FRED M, 1969, J CLIN INVEST, V48, P795
[8]   Cytoskeleton confinement and tension of red blood cell membranes [J].
Gov, N ;
Zilman, AG ;
Safran, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (22) :4
[9]   Active elastic network: Cytoskeleton of the red blood cell [J].
Gov, Nir S. .
PHYSICAL REVIEW E, 2007, 75 (01)
[10]   Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects [J].
Gov, NS ;
Safran, SA .
BIOPHYSICAL JOURNAL, 2005, 88 (03) :1859-1874