Shape perception reduces activity in human primary visual cortex

被引:337
作者
Murray, SO [1 ]
Kersten, D
Olshausen, BA
Schrater, P
Woods, DL
机构
[1] Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Neurol, Davis, CA 95616 USA
[4] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA
[5] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[6] Dept Vet Affairs No Calif Hlth Care Syst, Neurol Serv, Martinez, CA 94553 USA
关键词
D O I
10.1073/pnas.192579399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visual perception involves the grouping of individual elements into coherent patterns that reduce the descriptive complexity of a visual scene. The physiological basis of this perceptual simplification remains poorly understood. We used functional MRI to measure activity in a higher object processing area, the lateral occipital complex, and in primary visual cortex in response to visual elements that were either grouped into objects or randomly arranged. We observed significant activity increases in the lateral occipital complex and concurrent reductions of activity in primary visual cortex when elements formed coherent shapes, suggesting that activity in early visual areas is reduced as a result of grouping processes performed in higher areas. These findings are consistent with predictive coding models of vision that postulate that inferences of high-level areas are subtracted from incoming sensory information in lower areas through cortical feedback.
引用
收藏
页码:15164 / 15169
页数:6
相关论文
共 31 条
[1]   ATTENTIONAL MODULATION OF NEURAL PROCESSING OF SHAPE, COLOR, AND VELOCITY IN HUMANS [J].
CORBETTA, M ;
MIEZIN, FM ;
DOBMEYER, S ;
SHULMAN, GL ;
PETERSEN, SE .
SCIENCE, 1990, 248 (4962) :1556-1559
[2]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[3]   Topography of contextual modulations mediated by short-range interactions in primary visual cortex [J].
Das, A ;
Gilbert, CD .
NATURE, 1999, 399 (6737) :655-661
[4]   Retinotopic organization in human visual cortex and the spatial precision of functional MRI [J].
Engel, SA ;
Glover, GH ;
Wandell, BA .
CEREBRAL CORTEX, 1997, 7 (02) :181-192
[5]   Distributed Hierarchical Processing in the Primate Cerebral Cortex [J].
Felleman, Daniel J. ;
Van Essen, David C. .
CEREBRAL CORTEX, 1991, 1 (01) :1-47
[6]   Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system [J].
Fischl, B ;
Sereno, MI ;
Dale, AM .
NEUROIMAGE, 1999, 9 (02) :195-207
[7]  
Friston K., 1994, HUM BRAIN MAPP, V1, P153, DOI DOI 10.1002/HBM.460010207
[9]   Spatial attention affects brain activity in human primary visual cortex [J].
Gandhi, SP ;
Heeger, DJ ;
Boynton, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3314-3319
[10]  
GREEN DM, 1966, SIGNAL DETECTION THE