A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism

被引:173
作者
Serber, Z
Lai, HC
Yang, A
Ou, HD
Sigal, MS
Kelly, AE
Darimont, BD
Duijf, PHG
van Bokhoven, H
McKeon, F
Dötsch, V
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94143 USA
[4] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[5] Univ Oregon, Dept Biol, Eugene, OR 97403 USA
[6] Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands
关键词
D O I
10.1128/MCB.22.24.8601-8611.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human genome is far smaller than originally estimated, and one explanation is that alternative splicing creates greater proteomic complexity than a simple count of open reading frames would suggest. The p53 homologue p63, for example, is a tetrameric transcription factor implicated in epithelial development and expressed as at least six isoforms with widely differing transactivation potential. In particular, p63alpha isoforms contain a 27-kDa C-terminal region that drastically reduces their activity and is of clear biological importance, since patients with deletions in this C terminus have phenotypes very similar to patients with mutations in the DNA-binding domain. We have identified a novel domain within this C terminus that is necessary and sufficient for transcriptional inhibition and which acts by binding to a region in the N-terminal transactivation domain of p63 homologous to the MDM2 binding site in p53. Based on this mechanism, we provide a model that explains the transactivation potential of homo- and heterotetramers composed of different p63 isoforms and their effect on p53.
引用
收藏
页码:8601 / 8611
页数:11
相关论文
共 53 条
[1]   Cloning and chromosomal mapping of the human p53-related KET gene to Chromosome 3q27 and its murine homolog Ket to mouse Chromosome 16 [J].
Augustin, M ;
Bamberger, C ;
Paul, D ;
Schmale, H .
MAMMALIAN GENOME, 1998, 9 (11) :899-902
[2]   Mdm2 binds p73α without targeting degradation [J].
Bálint, E ;
Bates, S ;
Vousden, KH .
ONCOGENE, 1999, 18 (27) :3923-3929
[3]   The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63 [J].
Calabrò, V ;
Mansueto, G ;
Parisi, T ;
Vivo, M ;
Calogero, RA ;
La Mantia, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2674-2681
[4]   Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome [J].
Celli, J ;
Duijf, P ;
Hamel, BCJ ;
Bamshad, M ;
Kramer, B ;
Smits, APT ;
Newbury-Ecob, R ;
Hennekam, RCM ;
Van Buggenhout, G ;
van Haeringen, B ;
Woods, CG ;
van Essen, AJ ;
de Waal, R ;
Vriend, G ;
Haber, DA ;
Yang, A ;
McKeon, F ;
Brunner, HG ;
van Bokhoven, H .
CELL, 1999, 99 (02) :143-153
[5]   Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain [J].
Chi, SW ;
Ayed, A ;
Arrowsmith, CH .
EMBO JOURNAL, 1999, 18 (16) :4438-4445
[6]   The ubiquitin-proteasome pathway: on protein death and cell life [J].
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (24) :7151-7160
[7]   p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53 [J].
Davison, TS ;
Vagner, C ;
Kaghad, M ;
Ayed, A ;
Caput, D ;
Arrowsmith, CH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18709-18714
[8]   Inactivation of the p53-homologue p73 by the mdm2-oncoprotein [J].
Dobbelstein, M ;
Wienzek, S ;
König, C ;
Roth, J .
ONCOGENE, 1999, 18 (12) :2101-2106
[9]   MICE DEFICIENT FOR P53 ARE DEVELOPMENTALLY NORMAL BUT SUSCEPTIBLE TO SPONTANEOUS TUMORS [J].
DONEHOWER, LA ;
HARVEY, M ;
SLAGLE, BL ;
MCARTHUR, MJ ;
MONTGOMERY, CA ;
BUTEL, JS ;
BRADLEY, A .
NATURE, 1992, 356 (6366) :215-221
[10]   p63 and p73 are required for p53-dependent apoptosis in response to DNA damage [J].
Flores, ER ;
Tsai, KY ;
Crowley, D ;
Sengupta, S ;
Yang, A ;
McKeon, F ;
Jacks, T .
NATURE, 2002, 416 (6880) :560-564