A Survey on Automated Fact-Checking

被引:149
作者
Guo, Zhijiang [1 ]
Schlichtkrull, Michael [1 ]
Vlachos, Andreas [1 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
关键词
FAKE NEWS; MISINFORMATION; VERIFICATION; EPISTEMOLOGY; REPOSITORY; WEB;
D O I
10.1162/tacl_a_00454
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.
引用
收藏
页码:178 / 206
页数:29
相关论文
共 204 条
  • [1] Adair Bill, 2017, P 2017 COMP JOURN S
  • [2] Ahmadi N., 2019, Proceedings of the 2019 Truth and Trust Online Conference
  • [3] Aker Ahmet, 2017, P INT C RECENT ADV N, P31, DOI 10.26615/978-954-452- 049- 6_ 005
  • [4] Alam F., 2021, arXiv
  • [5] Alhindi T., 2018, P 1 WORKSHOP FACT EX, P85, DOI [DOI 10.18653/V1/W18-5513, 10.18653/v1/W18-5513,eprint:https://aclanthology.org/W18-5513.pdf]
  • [6] Time-aware evidence ranking for fact-checking
    Allein, Liesbeth
    Augenstein, Isabelle
    Moens, Marie-Francine
    [J]. JOURNAL OF WEB SEMANTICS, 2021, 71 (71):
  • [7] Aly Rami., 2021, 35 C NEURAL INFORM P, DOI [10.1016/j.websem.2021.100663, DOI 10.1016/J.WEBSEM.2021.100663]
  • [8] On Detecting Cherry-picked Trendlines
    Asudeh, Abolfazl
    Jagadish, H., V
    Wu, You
    Yu, Cong
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (06): : 939 - 952
  • [9] Atanasova P, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P3256
  • [10] Atanasova Pepa, 2020, P 58 ANN M ASS COMPU, P7352, DOI 10.18653/v1/2020.acl-main.656