The Challenge of Detecting Epistasis (G x G Interactions): Genetic Analysis Workshop 16

被引:15
作者
An, Ping [1 ,2 ]
Mukherjee, Odity [3 ]
Chanda, Pritam [4 ]
Yao, Li [5 ]
Engelman, Corinne D. [5 ]
Huang, Chien-Hsun [6 ]
Zheng, Tian [6 ]
Kovac, Ilija P. [7 ]
Dube, Marie-Pierre [7 ]
Liang, Xueying [8 ]
Li, Jia [9 ]
de Andrade, Mariza [9 ]
Culverhouse, Robert [10 ]
Malzahn, Doerthe [11 ]
Manning, Alisa K. [12 ]
Clarke, Geraldine M. [13 ]
Jung, Jeesun [14 ]
Province, Michael A. [1 ,2 ]
机构
[1] Washington Univ, Sch Med, Div Stat Genom, St Louis, MO 63108 USA
[2] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63108 USA
[3] Natl Ctr Biol Sci, Bangalore, Karnataka, India
[4] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
[5] Univ Wisconsin, Dept Human Dev & Family Studies, Madison, WI USA
[6] Columbia Univ, Dept Stat, New York, NY USA
[7] Montreal Heart Inst, Res Ctr, Montreal, PQ H1T 1C8, Canada
[8] NCI, Div Canc Epidemiol & Genet, NIH, DHHS, Bethesda, MD 20892 USA
[9] Mayo Clin, Dept Hlth Sci Res, Rochester, MN USA
[10] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[11] Univ Gottingen, Dept Genet Epidemiol, Univ Med Ctr, Gottingen, Germany
[12] Boston Univ, Sch Publ Hlth, Boston, MA USA
[13] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[14] Indiana Univ, Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
关键词
generalized linear model; machine learning methods; ASSOCIATION;
D O I
10.1002/gepi.20474
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Interest is increasing in epistasis as a possible source of the unexplained variance missed by genome-wide association studies. The Genetic Analysis Workshop 16 Group 9 participants evaluated a wide variety of classical and novel analytical methods for detecting epistasis, in both the statistical and machine learning paradigms, applied to both real and simulated data. Because the magnitude of epistasis is clearly relative to scale of penetrance, and therefore to some extent, to the choice of model framework, it is not surprising that strong interactions under one model might be minimized or even disappear entirely under a different modeling framework. Genet. Epidetniol. 33 (Suppl. 1):S58-S67, 2009. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:S58 / S67
页数:10
相关论文
共 38 条
[1]  
Amos Christopher I, 2009, BMC Proc, V3 Suppl 7, pS2
[2]  
An Ping, 2009, BMC Proc, V3 Suppl 7, pS71
[3]  
[Anonymous], 2004, Introduction to Machine Learning
[4]   Facts limiting the theory of heredity [J].
Bateson, W .
SCIENCE, 1907, 26 :649-660
[5]   Genetic and genomic discovery using family studies [J].
Borecki, Ingrid B. ;
Province, Michael A. .
CIRCULATION, 2008, 118 (10) :1057-1063
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]  
Brunner E., 2001, Nonparametric Analysis of Longitudinal Data in Factorial Experiments, V1st
[8]   Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth [J].
Carlborg, R ;
Hocking, PM ;
Burt, DW ;
Haley, CS .
GENETICAL RESEARCH, 2004, 83 (03) :197-209
[9]  
Chanda Pritam, 2009, BMC Proc, V3 Suppl 7, pS72
[10]   Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions [J].
Chatterjee, Nilanjan ;
Kalaylioglu, Zeynep ;
Moslehi, Roxana ;
Peters, Ulrike ;
Wacholder, Sholom .
AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 79 (06) :1002-1016