SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid

被引:161
作者
Yoo, Chan Yul
Miura, Kenji
Jin, Jing Bo
Lee, Jiyoung
Park, Hyeong Cheol
Salt, David E.
Yun, Dae-Jin
Bressan, Ray A.
Hasegawa, Paul M. [1 ]
机构
[1] Purdue Univ, Ctr Plant Environm Stress Physiol, W Lafayette, IN 47907 USA
[2] Gyeongsang Natl Univ, Grad Sch, Natl Core Res Ctr, Plant Mol Biol & Biotechnol Res Ctr & Environm Bi, Jinju 660701, South Korea
关键词
D O I
10.1104/pp.106.088831
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Small ubiquitin-like modifier (SUMO) conjugation/deconjugation to heat shock transcription factors regulates DNA binding of the peptides and activation of heat shock protein gene expression that modulates thermal adaptation in metazoans. SIZ1 is a SUMO E3 ligase that facilitates SUMO conjugation to substrate target proteins (sumoylation) in Arabidopsis (Arabidopsis thaliana). siz1 T-DNA insertional mutations (siz1-2 and siz1-3; Miura et al., 2005) cause basal, but not acquired, thermo-sensitivity that occurs in conjunction with hyperaccumulation of salicylic acid (SA). NahG encodes a salicylate hydroxylase, and expression in siz1-2 seedlings reduces endogenous SA accumulation to that of wild-type levels and further increases thermosensitivity. High temperature induces SUMO1/2 conjugation to peptides in wild type but to a substantially lesser degree in siz1 mutants. However, heat shock-induced expression of genes, including heat shock proteins, ascorbate peroxidase 1 and 2, is similar in siz1 and wild-type seedlings. Together, these results indicate that SIZ1 and, by inference, sumoylation facilitate basal thermotolerance through processes that are SA independent.
引用
收藏
页码:1548 / 1558
页数:11
相关论文
共 82 条
[1]   Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid desaturation [J].
Alfonso, M ;
Yruela, I ;
Almárcegui, S ;
Torrado, E ;
Pérez, MA ;
Picorel, R .
PLANTA, 2001, 212 (04) :573-582
[2]   Inhibition of DNA binding by differential sumoylation of heat shock factors [J].
Anckar, J ;
Hietakangas, V ;
Denessiouk, K ;
Thiele, DJ ;
Johnson, MS ;
Sistonen, L .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (03) :955-964
[3]   Heat stress response in plants:: a complex game with chaperones and more than twenty heat stress transcription factors [J].
Baniwal, SK ;
Bharti, K ;
Chan, KY ;
Fauth, M ;
Ganguli, A ;
Kotak, S ;
Mishra, SK ;
Nover, L ;
Port, M ;
Scharf, KD ;
Tripp, J ;
Weber, C ;
Zielinski, D ;
von Koskull-Döring, P .
JOURNAL OF BIOSCIENCES, 2004, 29 (04) :471-487
[4]   Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1 [J].
Bernier-Villamor, V ;
Sampson, DA ;
Matunis, MJ ;
Lima, CD .
CELL, 2002, 108 (03) :345-356
[5]   PHOTOSYNTHETIC RESPONSE AND ADAPTATION TO TEMPERATURE IN HIGHER-PLANTS [J].
BERRY, J ;
BJORKMAN, O .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :491-543
[6]   A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus [J].
Bohren, KM ;
Nadkarni, V ;
Song, JH ;
Gabbay, KH ;
Owerbach, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :27233-27238
[7]   Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes [J].
Bossis, G ;
Melchior, F .
MOLECULAR CELL, 2006, 21 (03) :349-357
[8]   Molecular chaperones and protein folding in plants [J].
Boston, RS ;
Viitanen, PV ;
Vierling, E .
PLANT MOLECULAR BIOLOGY, 1996, 32 (1-2) :191-222
[9]   Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation [J].
Charng, YY ;
Liu, HC ;
Liu, NY ;
Hsu, FC ;
Ko, SS .
PLANT PHYSIOLOGY, 2006, 140 (04) :1297-1305
[10]   Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana [J].
Clarke, SM ;
Mur, LAJ ;
Wood, JE ;
Scott, IM .
PLANT JOURNAL, 2004, 38 (03) :432-447