Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer

被引:159
作者
Osada, H [1 ]
Takahashi, T [1 ]
机构
[1] Aichi Canc Ctr, Res Inst, Div Mol Oncol, Chikusa Ku, Nagoya, Aichi 4648681, Japan
关键词
tumor suppressor; oncogene; lung cancer;
D O I
10.1038/sj.onc.1205802
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lung cancer has become the leading cause of cancer death in many economically well-developed countries. Recent molecular biological studies have revealed that overt lung cancers frequently develop through sequential morphological steps, with the accumulation of multiple genetic and epigenetic alterations affecting both tumor suppressor genes and dominant oncogenes. Cell cycle progression needs to be properly regulated, while cells have built-in complex and minute mechanisms such as cell cycle checkpoints to maintain genomic integrity. Genes in the p16INK4A-RB and p14ARF-p53 pathways appear to be a major target for genetic alterations involved in the pathogenesis of lung cancer. Several oncogenes are also known to be altered in lung cancer, leading to the stimulation of autocrine/paracrine loops and activation of multiple signaling pathways. It is widely acknowledged that carcinogens in cigarette smoke are deeply involved in these multiple genetic alterations, mainly through the formation of DNA adducts. A current understanding of the molecular mechanisms of lung cancer pathogenesis and progression is presented in relation to cigarette smoking, an absolute major risk factor for lung cancer development, by reviewing genetic alterations of various tumor suppressor genes and oncogenes thus far identified in lung cancer, with brief summaries of their functions and regulation.
引用
收藏
页码:7421 / 7434
页数:14
相关论文
共 182 条
[1]   Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours [J].
Agathanggelou, A ;
Honorio, S ;
Macartney, DP ;
Martinez, A ;
Dallol, A ;
Radar, J ;
Fullwood, P ;
Chauhan, A ;
Walker, R ;
Shaw, JA ;
Hosoe, S ;
Lerman, MI ;
Minna, JD ;
Maher, ER ;
Latif, F .
ONCOGENE, 2001, 20 (12) :1509-1518
[2]  
Al Moustafa AE, 1999, ANTICANCER RES, V19, P481
[3]   High telomerase activity in primary lung cancers: Association with increased cell proliferation rates and advanced pathologic stage [J].
Albanell, J ;
Lonardo, F ;
Rusch, V ;
Engelhardt, M ;
Langenfeld, J ;
Han, W ;
Klimstra, D ;
Venkatraman, E ;
Moore, MAS ;
Dmitrovsky, E .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1997, 89 (21) :1609-1615
[4]   Mice without telomerase: what can they teach us about human cancer? [J].
Artandi, SE ;
DePinho, RA .
NATURE MEDICINE, 2000, 6 (08) :852-855
[5]  
Barr LF, 2000, CANCER RES, V60, P143
[6]   p14ARF links the tumour suppressors RB and p53 [J].
Bates, S ;
Phillips, AC ;
Clark, PA ;
Stott, F ;
Peters, G ;
Ludwig, RL ;
Vousden, KH .
NATURE, 1998, 395 (6698) :124-125
[7]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[8]  
Brognard J, 2001, CANCER RES, V61, P3986
[9]   Epigenetic inactivation of RASSF14 in lung and breast cancers and malignant phenotype suppression [J].
Burbee, DG ;
Forgacs, E ;
Zöchbauer-Müller, S ;
Shivakumar, L ;
Fong, K ;
Gao, BN ;
Randle, D ;
Kondo, M ;
Virmani, A ;
Bader, S ;
Sekido, Y ;
Latif, F ;
Milchgrub, S ;
Toyooka, S ;
Gazdar, AF ;
Lerman, MI ;
Zabarovsky, E ;
White, M ;
Minna, JD .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (09) :691-699
[10]  
Cagle PT, 1997, AM J PATHOL, V150, P393