Genomic profiling of hormone-naive lymph node metastases in patients with prostate cancer

被引:18
作者
Paris, Pamela L.
Hofer, Matthias D.
Albo, Giancarlo
Kuefer, Rainer
Gschwend, Juergen E.
Hautmann, Richard E.
Fridyland, Jane
Simko, Jeffrey
Carroll, Peter R.
Rubin, Mark A.
Collins, Colin [1 ]
机构
[1] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Urol, San Francisco, CA 94115 USA
[2] Brigham & Womens Hosp, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Univ Bari, Dept Urol, Bari, Italy
[5] Urol Univ Hosp Ulm, Ulm, Germany
[6] Univ Calif San Francisco, Ctr Comprehens Canc, Biostat Ctr Bioinformat & Mol Biostat, San Francisco, CA 94115 USA
[7] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94115 USA
来源
NEOPLASIA | 2006年 / 8卷 / 12期
关键词
lymph nodes; prostate cancer; aCGH; metastases; biomarkers;
D O I
10.1593/neo.06421
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The progression of organ-confined prostate cancer to metastatic cancer is inevitably fatal. Consequently, identification of structural changes in the genome and associated transcriptional responses that drive this progression is critical to understanding the disease process and the development of biomarkers and therapeutic targets. In this study, whole genome copy number changes in genomes of hormone-naive lymph node metastases were profiled using array comparative genomic hybridization, and matched primaries were included for a subset. Matched primaries and lymph node metastases showed very similar copy number profiles that are distinct from primary tumors that fail to metastasize.
引用
收藏
页码:1083 / U54
页数:41
相关论文
共 22 条
[1]   High-level expression of cutaneous fatty acid-binding protein in prostatic carcinomas and its effect on tumorigenicity [J].
Adamson, J ;
Morgan, EA ;
Beesley, C ;
Meil, YQ ;
Foster, CS ;
Fujii, H ;
Rudland, PS ;
Smith, PH ;
Ke, YQ .
ONCOGENE, 2003, 22 (18) :2739-2749
[2]   Fluorescence in situ hybridization analysis of matched primary tumour and lymph-node metastasis of D1 (pT2-3pN1M0) prostate cancer [J].
Alcaraz, A ;
Corral, JM ;
Ribal, MJ ;
Mallofré, C ;
Mengual, L ;
Carrió, A ;
Sedó, JMGV ;
Villavicencio, H .
BJU INTERNATIONAL, 2004, 94 (03) :407-411
[3]   Hidden Markov models approach to the analysis of array CGH data [J].
Fridlyand, J ;
Snijders, AM ;
Pinkel, D ;
Albertson, DG ;
Jain, AN .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :132-153
[4]  
Hermanek P, 1997, TNM ATLAS
[5]   Cancer statistics, 2004 [J].
Jemal, A ;
Tiwari, RC ;
Murray, T ;
Ghafoor, A ;
Samuels, A ;
Ward, E ;
Feuer, EJ ;
Thun, MJ .
CA-A CANCER JOURNAL FOR CLINICIANS, 2004, 54 (01) :8-29
[6]  
Jing C, 2000, CANCER RES, V60, P2390
[7]  
Jing C, 2001, CANCER RES, V61, P4357
[8]   Gene expression profiling identifies clinically relevant subtypes of prostate cancer [J].
Lapointe, J ;
Li, C ;
Higgins, JP ;
van de Rijn, M ;
Bair, E ;
Montgomery, K ;
Ferrari, M ;
Egevad, L ;
Rayford, W ;
Bergerheim, U ;
Ekman, P ;
DeMarzo, AM ;
Tibshirani, R ;
Botstein, D ;
Brown, PO ;
Brooks, JD ;
Pollack, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (03) :811-816
[9]   Evolution of 8p loss in transformed human prostate epithelial cells [J].
Macoska, JA ;
Paris, P ;
Collins, C ;
Andaya, A ;
Beheshti, B ;
Chaib, H ;
Kant, R ;
Begley, L ;
MacDonald, JW ;
Squire, JA .
CANCER GENETICS AND CYTOGENETICS, 2004, 154 (01) :36-43
[10]   Two putative tumor suppressor genes on chromosome arm 8p may play different roles in prostate cancer [J].
Oba, K ;
Matsuyama, H ;
Yoshihiro, S ;
Kishi, F ;
Takahashi, M ;
Tsukamoto, M ;
Kinjo, M ;
Sagiyama, K ;
Naito, K .
CANCER GENETICS AND CYTOGENETICS, 2001, 124 (01) :20-26