Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection

被引:493
作者
Zhong, SJ [1 ]
Zuber, MT
Moresi, L
Gurnis, M
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] CSIRO, Australian Geodynam Cooperat Res Ctr, Nedlands, WA 6009, Australia
[3] CALTECH, Seismol Lab, Pasadena, CA 91125 USA
关键词
D O I
10.1029/2000JB900003
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Layered viscosity, temperature-dependent viscosity, and surface plates have an important effect on the scale and morphology of structure in spherical models of mantle convection. We find that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates, corroborating earlier studies, However,combining the layered viscosity structure with a temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our models show that the scale of convection is mainly controlled by the surface plates, supporting the previous two-dimensional studies. Our models with surface plates: layered and temperature-dependent viscosity, and internal heating explain mantle structures inferred from seismic tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB) with linear structures, and as they depart from CMB, the linear upwellings quickly change into quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates while ascending through the mantle. A linear upwelling structure is generated again at shallow depths (<200 km) in the vicinity of diverging plate margins because of the surface plates. At shallow depths, cold downwelling sheets form at converging plate margins. The evolution of downwelling sheets depends on the mantle rheology. The temperature-dependent viscosity strengthens the downwelling sheets so that the sheet structure can be maintained throughout the mantle. The tendency for linear upwelling and downwelling structures to break into plume-like structures is stronger at higher Rayleigh numbers. Our models also show that downwellings tp first-order control surface plate motions and the locations and horizontal motion of upwellings. Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of downwellings. Temperature-dependent viscosity greatly enhances tb: ascending velocity of developed upwelling plumes, and this may reduce the influence of global mantle flow on the motion of plumes. Our results can explain the anticorrelation between hotspot distribution and fast seismic wave speed anomalies in the lower mantle and may also have significant implications to the observed stationarity of hotspots.
引用
收藏
页码:11063 / 11082
页数:20
相关论文
共 70 条
[1]  
Bathe K.J., 2006, Finite Element Procedures
[2]   3-DIMENSIONAL TREATMENT OF CONVECTIVE FLOW IN THE EARTHS MANTLE [J].
BAUMGARDNER, JR .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (5-6) :501-&
[3]   Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication [J].
Bercovici, D .
EARTH AND PLANETARY SCIENCE LETTERS, 1998, 154 (1-4) :139-151
[4]  
BROOKS AN, 1981, THESIS CALTECH PASAD
[5]   Effect of depth-dependent viscosity on the planform of mantle convection [J].
Bunge, HP ;
Richards, MA ;
Baumgardner, JR .
NATURE, 1996, 379 (6564) :436-438
[6]   A sensitivity study of three-dimensional spherical mantle convection at 10(8) Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change [J].
Bunge, HP ;
Richards, MA ;
Baumgardner, JR .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B6) :11991-12007
[7]   Time scales and heterogeneous structure in geodynamic earth models [J].
Bunge, HP ;
Richards, MA ;
Lithgow-Bertelloni, C ;
Baumgardner, JR ;
Grand, SP ;
Romanowicz, BA .
SCIENCE, 1998, 280 (5360) :91-95
[8]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA
[9]   3-D CONVECTION WITH VARIABLE VISCOSITY [J].
CHRISTENSEN, U ;
HARDER, H .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1991, 104 (01) :213-226
[10]   HEAT-TRANSPORT BY VARIABLE VISCOSITY CONVECTION AND IMPLICATIONS FOR THE EARTHS THERMAL EVOLUTION [J].
CHRISTENSEN, UR .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1984, 35 (04) :264-282