Superroughening versus intrinsic anomalous scaling of surfaces

被引:169
作者
Lopez, JM
Rodriguez, MA
Cuerno, R
机构
[1] UNIV CANTABRIA,CSIC,INST FIS CANTABRIA,E-39005 SANTANDER,SPAIN
[2] UNIV CARLOS III MADRID,DEPT MATEMAT,E-28911 LEGANES,SPAIN
[3] UNIV CARLOS III MADRID,CTRP INTERDISCIPLINAR SISTEMAS COMPLICADOS,E-28911 LEGANES,SPAIN
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 04期
关键词
D O I
10.1103/PhysRevE.56.3993
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study kinetically rough surfaces which display anomalous scaling in local properties such as the roughness or the height-difference correlation function. By studying the power spectrum of the surface and its relation to the height-difference correlation, we distinguish two independent causes for anomalous scaling. One is superroughening (global roughness exponent larger than or equal to 1), even if the spectrum behaves nonanomalously. Another cause is what we term an intrinsically anomalous spectrum, in whose scaling an independent exponent exists, which induces different scaling properties for small and large length scales. We show that in this case the surface does not need to be superrough in order to display anomalous scaling. The scaling relations we propose for the structure factor and height-difference correlation for intrinsically anomalous surfaces are shown to hold for a random diffusion equation, independently of the value of the global roughness exponent below or above one.
引用
收藏
页码:3993 / 3998
页数:6
相关论文
共 20 条
[1]   GROOVE INSTABILITIES IN SURFACE GROWTH WITH DIFFUSION [J].
AMAR, JG ;
LAM, PM ;
FAMILY, F .
PHYSICAL REVIEW E, 1993, 47 (05) :3242-3245
[2]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[3]   KINETIC SUPERROUGHENING AND ANOMALOUS DYNAMIC SCALING IN NONEQUILIBRIUM GROWTH-MODELS [J].
DASSARMA, S ;
GHAISAS, SV ;
KIM, JM .
PHYSICAL REVIEW E, 1994, 49 (01) :122-125
[4]   Scale invariance and dynamical correlations in growth models of molecular beam epitaxy [J].
DasSarma, S ;
Lanczycki, CJ ;
Kotlyar, R ;
Ghaisas, SV .
PHYSICAL REVIEW E, 1996, 53 (01) :359-388
[5]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[6]  
Falconer K., 1993, FRACTAL GEOMETRY MAT
[7]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[8]  
GALLUCCIO S, COMMUNICATION
[9]   KINETIC ROUGHENING PHENOMENA, STOCHASTIC GROWTH DIRECTED POLYMERS AND ALL THAT - ASPECTS OF MULTIDISCIPLINARY STATISTICAL-MECHANICS [J].
HALPINHEALY, T ;
ZHANG, YC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 254 (4-6) :215-415
[10]   TURBULENT INTERFACES [J].
KRUG, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2907-2910