Star polymer synthesis using trithiocarbonate functional β-cyclodextrin cores (Reversible addition-fragmentation chain-transfer polymerization)

被引:248
作者
Stenzel, MH [1 ]
Davis, TP [1 ]
机构
[1] Univ New S Wales, Ctr Adv Macromol Design, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
关键词
polystyrene; star polymers; reversible addition-fragmentation chain-transfer; (RAFT) polymerization; gel permeation chromatography (GPC);
D O I
10.1002/pola.10532
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polystyrene stars were synthesized with reversible addition-fragmentation chain-transfer (RAFT) polymerization. The core of the stars comprised a trithiocarbonate heptafunctional beta-cyclodextrin ring. Polymerizations were performed at 100 and 120 degreesC in the absence of an extraneous initiator and at 60 degreesC in the presence of a radical initiator. Monofunctional trithiocarbonate was also synthesized and used to make linear polystyrene to allow direct a comparison with the star synthesis. In all cases, the polymerization kinetics conformed to pseudo-first-order behavior. The measured molecular weights of the stars were found to deviate from those predicted on the basis of the monomer/trithiocarbonate group ratio. The extent of this deviation was dependent on the polymerization temperature, RAFT agent concentration, and conversion. Despite the low radical concentrations, termination reactions are suggested to play a significant role in the seven-arm polystyrene star syntheses. The synthetic method was found to be suitable for generating star block structures. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:4498 / 4512
页数:15
相关论文
共 56 条
[1]  
[Anonymous], ACS S SER
[2]   Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by γ radiation [J].
Barner-Kowollik, C ;
Vana, P ;
Quinn, JF ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (08) :1058-1063
[3]   Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium [J].
Barner-Kowollik, C ;
Quinn, JF ;
Morsley, DR ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (09) :1353-1365
[4]   Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate [J].
Barner-Kowollik, C ;
Quinn, JF ;
Nguyen, TLU ;
Heuts, JPA ;
Davis, TP .
MACROMOLECULES, 2001, 34 (22) :7849-7857
[5]  
Barner-Kowollik C., 2002, HDB RADICAL POLYM, P187, DOI DOI 10.1002/0471220450.CH4
[6]   Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique [J].
Baum, M ;
Brittain, WJ .
MACROMOLECULES, 2002, 35 (03) :610-615
[7]   Living free-radical polymerization - A review [J].
Bisht, HS ;
Chatterjee, AK .
JOURNAL OF MACROMOLECULAR SCIENCE-POLYMER REVIEWS, 2001, C41 (03) :139-173
[8]   High-throughput synthesis of nanoscale materials:: Structural optimization of functionalized one-step star polymers [J].
Bosman, AW ;
Heumann, A ;
Klaerner, G ;
Benoit, D ;
Fréchet, JMJ ;
Hawker, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (26) :6461-6462
[9]   A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process [J].
Chong, YK ;
Le, TPT ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1999, 32 (06) :2071-2074
[10]  
Darling TR, 2000, J POLYM SCI POL CHEM, V38, P1706, DOI 10.1002/(SICI)1099-0518(20000515)38:10<1706::AID-POLA20>3.0.CO